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We investigate the long-time evolution of weakly perturbed single-site bredibesadized stationary states
in the discrete nonlinear Schiimger equation. The perturbations we consider correspond to time-periodic
solutions of the linearized equations around the breather, and can be(giipatially localized ofii) spatially
extended. For cage), which corresponds to the excitation of an internal mode of the breather, we find that the
nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather
amplitude and frequency. In caéé), corresponding to interaction between the breather and a standing-wave
phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of
radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition
yields a limit value for the breather frequency above which no further growth is possible. We also discuss
another mechanism for breather growth and destruction which becomes important when the amplitude of the
perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-
wave phonons.

PACS numbe(s): 42.65.Tg, 63.20.Pw, 05.45a, 63.20.Ry

[. INTRODUCTION an exact breather solution. By linearizing the lattice equa-
tions around the exact solution, one can obtain an approxi-
The concept of nonlinear self-localization is of impor- mate description of the dynamics of weakly perturbed
tance for many physical phenomena, and has appeared inbaeathers, and in particular the linear stability properties de-
number of different contexts since the pioneering work bytermining whether small perturbations will grow exponen-
Landau[1] on the polaron problem in the 1930s. In recenttially or not. It was shown in Refd2,5] that the simplest,
years, much attention has been devoted to studies of spatial§ngle-site, breathers are generally linearly stable close to the
localized and time-periodic vibrational modes in anharmoniauncoupled limit, and numerical investigations using standard
lattices(see, e.g., Ref$2,3] for recent reviews The general Floquet analysigsee, e.g., Ref8]) have shown that linearly
existence of such modes, which have been terdisdrete  stable breathers typically also exist for rather large values of
breathers or intrinsic localized modesas robust solutions to the intersite coupling. However, when considering time
nonlinear (and in general nonintegrabldattice-equations scales large compared to the breather period, the mere linear
was suggested in 1988 by Takeebal. [4]. Later, their ex- stability of a breather no longer guarantees the eternal exis-
istence was rigorously proven under rather general conditence of the breather in the presence of small perturbations,
tions by MacKay and Aubry5] by considering the limit of and there are still many questions remaining concerning the
uncoupled oscillatorgthe so calledanticontinuousor anti-  different mechanisms by which breathers may grow or de-
integrablelimit). By means of the implicit function theorem, cay, or possibly finally be destroyed. If the breathers have a
they showed that the trivial solution of a single-site localizedfinite lifetime, the determination of this lifetime is of large
vibration at the uncoupled limit could be continued into aimportance for understanding the role of breathers in real
localized breather solution for nonzero coupling between thaystems.
oscillators, provided that the individual oscillators are anhar- It is the purpose of this paper to investigate in more detail
monic, and that no multiples of the breather frequency resosome mechanisms for breather growth and decay in a simple
nate with the bands of linear excitatiofighonons. As was  model system, the discrete nonlinear Sclimger (DNLS)
demonstrated first in Ref6], the ideas of the rigorous proof equation. The DNLS equation is generic in the sense that it
can be turned into an efficient numerical scheme to calculatdescribes slowly(in time) varying modulational waves in
breather solutions to any desired accuracy. Since discretiscrete systems in a “rotating-wave” approximati¢see,
breathers appear under very general conditions in anhae.g., Refs[9,10]); however, due to its extra symmetry prop-
monic lattices, and provide efficient means of energy localerties (see Sec. )l it exhibits some nongeneric features
ization, they have been proposed as candidates to explain tlanong discrete systems, e.g., exact quasiperiodic breathers
experimentally observed localization of energy in many dif-[11]. The single-site breathers of the DNLS equation are sta-
ferent physical areas, e.g., DNA dynamjajs. tionary states which are linearly stable for all intersite cou-
Although, from fundamental and mathematical view- pling, and which reduce to the NLS soliton in the continuum
points, the existence theorems for discrete breathers providinit (see, e.g., Refd5,11-15). An important application
an important cornerstone for understanding the dynamics adppears in nonlinear optics, where the single-site DNLS
anharmonic lattices, it is probably of even greater physicabreather describes a discrete spatial soliton in an array of-
importance to understand the behavior of a system close tweakly coupled waveguidg¢46,17]; recent experimental ob-
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servations[18] confirm the successful use of the DNLS cases we have carefully checked that the boundary condi-

model in this context. tions have no essential influence on our results.
Some recent numerical investigatiofis9] have shown

that DNLS breathers can be spontaneously created from . MODEL AND FRAMEWORK FOR THE

noisy backgrounds, in a similar manner as was previously PERTURBATIONAL APPROACH

observed for Klein-Gordori10,20 and Fermi-Pasta-Ulam
(FPU) [21] lattices. Typically, this spontaneous energy local-
ization was observed to occur in two steps. In the first step, a We consider the following form of the DNLS Hamil-
large number of small breathers are created as a result of t@nian with canonical conjugated variablggi}, {7 }:
modulational instability [9,10,22,23 of traveling plane 1

waves occurring for certain wave number regimes. The secy({j lﬁn}.{lﬂ:}):E Clhner— tnl2— = |nl* | =2 H,.
ond step proceeds by inelastic collisions between the breath- n 2 n

ers, in which the large breathers grow systematically at the @
expense of the smaller ones. Thus the outcome will be Fhis yields the DNLS equation

small number of large breathers, together with some remain-

A. Model

ing background of small-amplitudéphonon oscillations. _ OH
However, it can generally not be concluded from numerical  i¢n=——=—C(¢ns1+ ¥n-1—2¢n) = [¢nl*¥n, (2
simulations that this is the true final state of the system, and I

actually long-time simulations for FPU chaif@l] also re-  \ynich in addition to Hamiltoniar(1), also conserves the

vealed a third step, in which the interaction with the phonon,ia) excitation norm(or powerin nonlinear optics applica-
oscillations leads to the final destruction of the breather a“‘ﬁons)

the equipartition of energy. Thus, to elucidate the nature of
the final states for typical initial conditions in anharmonic

" 2—
chains, it is necessary to obtain a better understanding of the N= ; [l _; Na. )
mechanisms for interactions between breathers and small-
amplitude perturbations. The conservation laws for the norm and Hamiltonian are,

In this paper, we take the following approach. As an ini-through Noether’s theorem, related to the invariance of the
tial state, we consider an exact single-site breather solutio®NLS equation(or, more precisely, of its corresponding ac-
and add a small perturbation Corresponding to a timeiion integ_ra) under infinitesimal transformations in phase
periodic eigensolution to the equations of motion linearized¥n— ¥n€') and time (—t+¢), respectively. Defining the
around the breather. These solutions, which can be eitheform density” A, and “Hamiltonian density”7#, as in
localized or extended in space, constitute a complete set iR9S-(3) and(1), respectively, the conservation laws can be
which an arbitrary initial perturbation can be expanded. Thé&XPressed in terms of continuity equations as
localized solutions correspond to internal modes of the d
breathel{ 13,2428, while the excitation of an extended so- "+ (In—(Ip)n-1=0, (4)
lution corresponds to a standing-wafie., nonpropagating dt
phonon interacting with the breather. In Sec. Il we describe d
the model and outline the perturbational approach which Hn+(JH)n_(JH)n_1:0’ (5)
forms the analytical backbone for an interpretation of the dt
numerical results presented in Secs. lll and IV. Section Il . .
discusses the long-time consequences of the interaction b@’-'th the (norm) current density
tween the breather and its internal modes, while Sec. IV _ *
concerns the interaction between the breather and small- Jy=2C MLy il ®
amplitude standing-wave phonons of different wave vectorsgng theHamiltonian flux density
We will find that, in both cases, a simple argument based on
conservation laws can be used to obtz_iin a sufficient condition Jy=—2CR{ iﬂn+1(</f:+1_ o1, 7)
for breather growth. In Sec. V we discuss another type of
mechanism for breather growth and destruction, which berespectively. These conservation laws are discrete analogs to
comes appreciable when the amplitude of the standing wavgose existing for the continuous NLS equations with general
is non-negligible(and consequently the perturbational ap-nonlinearities(see, e.g., Ref28]); however, there is no dis-
proach can be expected to faibnd which has its origin in  crete counterpart to the momentum conservation law since
the recently discovered oscillatory instabilities of the nonlin-the discrete equation has no continuous translational symme-
ear standing-wave phong¢@7]. Finally, we make some con- try in space. Furthermore, we note that the transformation
cluding remarks in Sec. VI. C——C in Eq. (2) is equivalent toy,—(—1)"e “Cly,,

Concerning the numerical simulations of the dynamicsand thus for the rest of this paper we will only consi@r
presented in this paper, unless otherwise stated they alwaysg without loss of generality.
apply for a system of infinite sizéfinite size systems are  The single-site DNLS breather is a stationary-state solu-
considered only in Sec. )V The simulations have been per- tion to Eq.(2) of the form
formed either by using very large system sizes or by append- '
ing damping regions of various sizes to the boundaries; in all ()= dn(A)er 8
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where the time-independent shafpg,} depends on the fre-
qguencyA and is spatially localized with a single maximum

at a lattice site. The breather exists for &HC>0; the limit

C—0 (or A—x), corresponding to the anticontinuous limit,
where{¢,} is localized at a single lattice site, while the limit

A/C—0 corresponds to the continuous limit, wheré,}
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en()=e(t)+ie (1)
_1 —iwpt 1 * * jwnt
=5a(Up+Wye '+ Sar (Uy — Wy )elr,
(16)

approaches the NLS soliton. The single-site breather is 8o that

ground state solution to EQR) in the sense that it minimizes

Hamiltonian (1) for a fixed value of norm(3), i.e., &H

+ A SN=0, where the frequenci appears as the Lagrange
multiplier (see, e.g., Ref.15]). The norm for the single-site
breather,V;, is known to be a monotonously increasing

function of A, while the Hamiltonian’, is negative and
monotonously decreasingee, e.g., Ref$29,30). From the
minimization condition, these functions will be related as

= _Ad_'/v‘f’ (9)
dA -

dH,
dA

To describe the dynamics close to the breatt&y we
introduce the following perturbation expansion:

Pn(D) ={n+ Nen() + N27(1) + N3&,(1)
FNA0, (1) + - - - JelfAdL (10

where €,(0) is the initial perturbation andy,(0)=¢,(0)

=60,(0)=---=0. Thus, as for the usual stability analysis of

stationary statetsee, e.g., Ref$12,31)), the perturbation is
applied in a frame rotating with the breather frequercy

Substituting into Eq(2) and identifying coefficients for con-

secutive powers of the small paramekerields an infinite
set of equations, which from zeroth to fourth orders read

_A¢n+c(¢n+1+ ¢n—1_2¢n)+|¢n|2¢n:0a (11)
E(A){En}z{i .€n+C(6n+1+ 6n—1_25n)+2|¢n|26n
+pier —Aen}=0, (12)
LN 70} = — ¢} €= 2],

LA {én= _24’: €n77n_2¢n(6: Mt enn:)_|6n|26n:

13

(14)
LA 0} = —2hn(€nél + €5 En+ | 10]D) — & (2€nén+ 1f)
—eann —2|enl? 70, (15)

where the operato£(A) (which is linear over the field of
real numbergis defined from the first equality in Eq12).
The zeroth order equatidil) gives the breather shape, }

(which for the single-site breather can be assumed real a

positive without loss of generality while the first order

equation (12) is the linearization of the DNLS equation

around the breather.

B. Solutions to the linearized equations

To obtain the solutions to the linearized equatigoh®),

we proceed in a similar way as is usually done for continu-

ous generalized NLS modelsee, e.g., Refd32-34) and
introduce a substitution of the form

e(t)=Rd €,(t)]=Re(al e~ s,

i . 17)
e (t)=Im[ en(t)]=Im(aW,e " “p").

Substituting Eq.(16) into Eqg. (12), and assumingp,, real,
yields

LoWp=—=C(W11+W,_1—2W,) - ¢ﬁwn+ AW,= wpUn )
(18

£1UnE_C(Un+1+Unfl_zun)_?"z’ﬁun"_/&un:wp\é\/nv
19

where the operator§, and £, are Hermitian. Thus we can
obtain the eigenfrequencies, and the corresponding eigen-
vectors (U, },{W,}) from matrix diagonalization:

M(O)({Un})z(o ﬁo)({un})_ ({Un}
Wot ) ey o)\ pwid) T Pl fw

To make a connection to earlier wofR,8|, we remark that
the vector (¢!} {e{)})=({U}.{—iW,}) is an eigenvector
of the Floquet matrix with eigenvalue '“r", where the time
period T is arbitrary since the operatork, and £, are time
independent(The symplectic Floquet matrix igV'FT, where
Mg is obtained fromv(®) by changingZ, into — £;.) Thus
Eq. (16) is the linear combination of two complex conju-
gated Floquet eigensolutions which mak&sd and e{!) real.
For the single-site breather, all eigenvalues of M(® are
always real, implying the linear stability of the breather for
all parameter valued/C>0 [35]. Accordingly, we can also
choose the eigenvector§U,,},{W,}) of M© to be real and
normalized, in which case the phase of the amplitadte-
scribes the symmetry properties of solutid®) under time
reversal: choosing real yields a time-symmetric solution,
€.(t) =€ (—t), while choosinga purely imaginary yields a
time-antisymmetric solutions,(t)=—ex (—t).

For an infinite system, the spectrum of th@on-
Hermitian matrix M(®) can generally be divided into a con-
tinuous (phonon part, corresponding to extended eigenvec-
tors, and a point spectrum corresponding to localized
%jgenvectors. The phonon spectrum for any localized solu-

|

"fon {¢,} is easily obtained from the lim{n|— o, since the

condition ¢,—0 implies that the operator§, and £, be-
come identical and Eqgs(18)—(19) reduce into two un-
coupled equations for the linear combinatians=U,+ W,
andb,=U,—W,. Assuminga,~e~'9a" andb,~e*'9%", re-
spectively, yields the dispersion relations

wp,=A—2C(cosqg,— 1), (22

wp,=—A+2C(cosqp,—1) (22
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2 - - — - - - - — =do,ldA+igt, and corresponds to a time-linear growth of
18| antioymmetiie — "] the perturbation representing a small change in the breather
band edge -~ frequency.
1er ) 1 Although the set of eigensolutiori46) together with the
14 1 two zero-frequency modes forms a basis for the space of
1ok i solutions to Eq(12) (there are no bifurcations, which could
/O result in additional “marginal modes['36], with time-linear
Pl 1y ] growth at degenerate eigenvalydhis basis is in general not
0.8 . orthogonal using the ordinary scalar product, and typically
06 - | there is a considerable overlap between the solution corre-
’ sponding to the internal breathing mode and the zero-
04 r vl 1 frequency modes. However, in analogy with, e.g., Rg2-
0.2 . 34], we can define a “pseudoscalar” product between any
N two vectors {(U{V}{WH}) and (UP}{WP) by
0 02 04 06 08 1 12 14 16 18 2
A/C R .
o _ > (UHWE" +wPU "), (23)
FIG. 1. Variation of internal mode frequencies vs breather fre- n

quency for the spatially symmetrisolid line) and antisymmetric
(dashed-dotted lineinternal modes of the single-site breather, re- This product is formally not a true scalar product, since for
spectively. Dashed straight line shows the lower band edge of ththe general case the product of a vector with itself as defined
phonon band. by Eqg. (23) is not necessarily positive. However, when
(U {w,Y) is a real eigenvector ofM(® we have
from Eqgs.(18) and(19). Thus the continuous spectrum of the 30U Wi = (Lwp) =W, LoW, from Eq.(18), and the opera-
matrix M(©® consists of two branches, symmetrically locatedtor £, is positive definite for allW,# ¢, [35]. With this
aroundw,=0, and sinceA>0 for the single-site breather product, it follows from Eqs(18) and(19) that all eigenso-

these two branches never overlap. Note also that two eigemgtions with different (real) eigenfrequencieso, are “or-
vectors with eigenvalues w, correspond to the same solu- thogonal” in the sense that

tion to Eg. (12) [changing the sign ofw, in Eq. (16) is
equivalent to changing ,«~U?} , W, —W} , a~»a*], and
therefore it is enough to consider, e.@,>0, in which case
b,=U,—W, always vanishes exponentially as- + «.

When A/C is not too large, the linear spectrum aroundand the only nonzero product involving the zero-frequency
the single-site breather also contains two pairs of nonzergnodes is the cross-product between the phase mode and the
isolated eigenvalues,,, which correspond to the two inter- growth mode[35],
nal modes of the breath¢t3,26. One of these modes is a
spatially symmetric, “breathing,” mode, while the other is a dpn 1 dN,
spatially antisymmetric “translational” or “pinning” mode. 2 gN 2 W>O* (29)

n

Numerically, it has been found that the breathing mode ex-

ists for 0<A/C=1.7, while the pinning mode exists for 0 where \,, is the norm[Eq. (3)] of the breather with fre-
quenciesw,, as a function of breather frequenay, are  muyltiplied by a factori is just the symplectic product
shown in Fig. 1. Note that a4/C—0, the breathing mode petween the two vectors {€DW) £y ang
frequency approaches the lower edge of the phonon barﬁeg)(z)},{eg)(z)}), the sign of the product of an eigenvector
(but always stays outside the bafb]), while the pinning i jtself can be interpreted as the negative of the Krein

qug frequgncy approaches zeoat always_ stays no_nze)ro signature of the corresponding pair of Floguet eigenvalues
This is consistent with the fact that the soliton solution of the[z]_

continuous NLS equation has no breathing m¢diee to its
exact integrability, and has a translational mode with zero
frequency due to the translational symmetry of the NLS
equation. As an initial state we now consider a single-site breather
To obtain a complete set of solutions to E#j2) in which  perturbed in the direction of a single eigenmddé) (local-
an arbitrary initial perturbatior,(0) can be expanded, we ized or extendedof the linearized equation&l2), and we
must also include the zero-frequency solutions, which genemish to describe qualitatively the long-time effects of this
ally can be written as a superposition of two fundamentaperturbation using expansiofi0). In general, taking into
modes. One of these modéke “phase mode’{36]) is the  account terms up to orderin this expansion yields a solu-
solution W,,= ¢,, to the homogeneous equati¢h8), £,W,  tion to the DNLS equation which is correct @A\P*1), i.e.,
=0. The corresponding perturbatien=i ¢, describes a ro- for long but finite time scales for small initial perturbations
tation of the overall phase of the breather. The second modgote that the expansion paramekeplays the same role as
(the “growth mode”[36]) is obtained by solving the inho- the mode amplituda). As is well known however, this kind
mogeneous equatiof;U,=— ¢,,, which has the solution of expansion in general diverges due to resonances between
U,=d¢,/dA. The corresponding solution to E(L2) is €,  solutions to the homogeneous equatit®8) and the inhomo-

(0= o@) 2 (UMW +WPUP") =0, (24
n

C. Strategy for the perturbational approach
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geneous terms appearing in the right-hand sides of Egs. Ill. BREATHER INTERACTING
(13)—(15) and the corresponding higher-order equations. A WITH INTERNAL MODES
resonance with a solution belonging to the continuous spec- |, . - : . :
trum results in a bounded but nonlocalized solution corre- With the initial p_erturbatlone_n(O) of j[he S|_ngle-5|te
sponding to outgoing radiation, while a resonance with alfreather corresponding to a spatially localized eigenmode of
eigenfunction belonging to the discrete spectrum gives a sp Igeslg(]:ea”“ée?hg?ﬁ?tfgiozz dgrlfaglgigLrOaTw?es %leﬁus:'gpe_
tially localized response which diverges linearly in time. ted. since for an glnt mal mode fr o yth e is al-
However, up to any finite order these divergences can pacd S et y h?h % Ie eq?ethy he N band
systematically removed by allowing a slow time dependencgvaé’SEan(g]negeFf” ﬁ‘lflcd I\‘;‘p“’p e 0?93 Oth e pnonon Ian

of the independent variables, which in our case are taken {ghd Ed IS fuffifie oreover, from the numerical re-
be the mode amplitude and the breather frequendy. This sults p_resented in Fig. 1, We_flnd that the spatially symmetrlc
procedure adds additional terms to the equations, which ca r%athllng m(.)de% zlifl_\lllvaa/sf radEitzes t(r)].lse;:r(])nd otrder, smtcg Eq.
be tuned so that the divergent parts of the response disap: always IS ulliied forp=z, while theé antisymmetric

pear. In other words, these two quantities are used as colle >|r(1)n£|1ré% rI|1_(r)]de r(;adla':esth'go sedqo?d ofrder t(;]nlyb Whﬁ]m th
tive variables which, together with the outgoing radiation” ="~ us, dué fo this radiation lrom the preather, he

fields, are expected to describe the main features of th tal norm contained in any finite region around the breather

asymptotic dynamics if the initial perturbation is sufficiently €., the total norm O_f breather plus mterngl mpaell al- .
small. ways decrease with time. However, the main concern here is

The second order correction is given by the Inhomogethe long-time effect of the internal-mode excitation on the

neous equatioril3), which with substitution(16) becomes breather itself, and thus we must investigate whether there
(choosing,, U,,, andW, real without loss of generalily will also be some transfer of energy between the breather and
ns ns n

its internal mode. We will firsSec. Il A) show results from

1 direct numerical integration of E@2); then we will give two
ﬁ(/\)'{ﬂn}z—§¢n[|a|2(3Uﬁ+Wﬁ) alternative approaches to the analytical interpretation of

these results based on the higher-order equaiibB)s-(15)

+(3U2—W2)Re(a%e 2p!) (Sec. Il B) and the conservation law#)—(5) (Sec. 1l O,

. respectively.
+2iU W, Im(a?e 2'*p)]. (26)

A. Numerical simulations
Thus the right-hand side contains one static part and one part
involving the frequencies- 2w, . It acts as a periodic force
with frequencies 0 and&,, and since all terms contain the
factor ¢, this force is localized at the breather region. The
response to this force will remain bounded and localized un=
less the corresponding homogeneous equdfi@hhas a so-
lution with frequency Qlor 2w,) which is nonorthogonal to
the corresponding part of the right-hand side in E§). As
will be shown in Sec. Ill B, a nonzero overlap between the 1a(0)|
static part of Eq(26) and the zero-frequency solutions of Eq. la(t)]~ ——————,
(12) yields a (time-independentshift of the breather fre- J1+ y|a(0)|zt
quency. Moreover, i\ <2|wy| <A +4C, so that 2v, is in-
side the phonon band of the homogeneous equation, a resahere y>0 is a constant. This is consistent with a similar
nance will generally occur, resulting in radiation with result obtained for the continuum NLS equation with gener-
frequency 2, emitted from the breather region. The alized(noncubig nonlinearity[33]; the analytical motivation
strength of the radiation field is determined by fgenerally ~ for this result(which is analogous to that of the continuum
nonzerg overlap between thea2, part of Eq.(26) and the  model given in Ref[33]) is given in the following subsec-
corresponding homogeneous soluti@ee Sec. IlIB. In a  tions.
similar way, we obtain that the right-hand side of the third- However, the main result of this section is illustrated in
order equation(14) contains the frequencies, and 3w, Figs. 2b) and Zc). Figure 2b) is obtained by calculating the
the fourth-order equatioril5) contains the frequencies 0, time average of the central-site intensity as
2wy, and 4w, and in general th@th-order equation con-

In Fig. 2, we show a typical example on the long-time
evolution of a breather when the initial perturbation is taken
in the direction of its internal breathing mode. As can be
seen from Fig. @), the amplitude of the breathing mode
decays slowly with time as a consequence of the losses due
to generation of second-order radiation, and a careful study
of its envelopga(t)| indicates that it decays as

(28)

tains as its highest harmonic the frequenmy,. Accord- 2 1 X
ingly, we conclude that if (g =1 = ¢ 2 ot (29
A<p|‘“p|<A+4C’ (27 wheret, is a set of closely spaced time instants. It is clear

that the interaction between the breather and its internal
so thatpw, belongs to the phonon band, the perturbedmode asymptotically leads to amcreaseof the average peak
breather will radiate tgth order. The consequences of this intensity, i.e., tobreather growth The same phenomenon is
radiation for the breather itself will be discussed in Secs. lllalso illustrated in Fig. @), where we plot the difference
and IV for the cases of localized and extended perturbationsetween the instantaneous breather frequency calculated at
{€n}, respectively. time t, A(t), and the frequency of the unperturbed breather
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FIG. 3. Time evolution of a breather with an initial perturbation
in the direction of the pinning mode. Parameters are0.45, w,
~0.197, andC=1. (a) shows the time evolution ¢f//n0_1|2, where
ng is the central site of the breathdh) (main figure shows the
instantaneous shift of the breather frequencft) — Ay, and the
inset in(b) shows the time averag(¢1//n0\2>t.

“closest” to the initial condition. As shown below in Sec.

11l B, this time-independent frequency shift, which is ob-
served to be always positive for the breathing mode, is a
consequence of the overlap between the static part of the
right-hand side of the second-order equati@®) and the
zero-frequency modes. Second, there is the slow, continuous
increase of the breather frequency which corresponds to the
slow increase O(|l//no|2>t in Fig. 2(b), indicating a continu-

ous transfer of norm from the internal mode to the breather.

FIG. 2. Time evolution of a breather with an initial perturbation It is described by the static part of the right-hand side of the
in the direction of the breathing mode. ParametersAare0.5, w,,

~0.47, andC=1. (a) shows the time evolution of the central-site
intensity | ¢, |, (b) shows its time averag@y, |); calculated us-
ing Eqg. (29), and(c) shows the instantaneous shift of breather fre-
quencyA(t)— Ay. The solid line in the main figure ifc) is a fit

using Eq.(40) with a(0)=0.082, C,=0.9078,C,=0.069, andy

=0.067.

fourth-order equatioril5) (see Sec. Il B.

When the initial perturbation of the breather is taken in
the direction of its internal pinning mode we observe, just as
for the breathing mode, that the breather—internal-mode in-
teraction asymptoticallglways leads to breather growtAn
example is shown in Fig. 3, where the parameter values have
been chosen so that the lowest harmonic that enters the pho-
non band is &, (A/C=0.45<0.480). We observe two

Ay. From this figure, we can also conclude that there are twqualitative differences compared to the case with breathing
different mechanisms causing the shift of breather frequencymode excitation. First, since in this case the first phonon

First, there is an initialalmost instantaneoysrather large,

resonance occurs only in the third-order equatibd), the

frequency shift, which can be interpreted as an adaption oflecay of the internal mode amplitude will be slower, and a
the initially perturbed breather to the breather which isgood fit is obtained byla(t)|~|a(0)|[1+ y|a(0)|*t]~ Y4
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This agrees with the general result whea,, is the lowest the central siten,, and agbno/aA is always positive. For the

harmonic that enters the phonon band obtained for the corspatially antisymmetric pinning mode, there is no contribu-
tinuum generalized NLS equation in RE33]; the derivation  tjon to this sum from the central site, sint, andW,_ are

%5‘? cqrresponsdlng”rleéug for the discrete C@ﬁﬁe Elq. zero. The change from a positive to a negative frequency
IS given In Sec. - AS @ consequence of the SIOWerqig e increasing\ in this case is related to a qualitative

decay of the internal mode amplitude, the breather grovvtt}/ham‘:]e of the nature of the growth mode,/dA: for A
will also be_ sloweryvherp>2, as can be seen fr_om Fights =0.55 we find thatd¢,/dA <0 for all n#n;, so.that all
by comparing the time-scales with those of Fig. 2. Secondterms in the sum in Eq(31) are negative, whileid, /aA

the initial shift of the breather frequency for a pinning mode s SRR .
excitation is always much smaller than for the breathingaISO becomes positive for sites in the neighborhoodydbr

mode excitatior(also when 2, is in the phonon bandand smallerA.

) . For the rest of the analysis in this subsection, we assume
v_vhenA/C_Z_O.S_S IS qlso observed to be negative. The explan%-r calculational simplicity that the internal mode frequency
tion for this is given in Sec. Il B. However, it is important to

) A . .Is such that 2, is inside the phonon bar@nd thus it is not
stress that in the cases where the initial frequency shift ig pplicable for the pinning mode excitation whe/C

negative, we also find that the continuous breather growtfgf1

L \ : o . =0.480). Then the nonstatic part of the right-hand side of
;:il\l/vgays will give an asymptotic frequency shift which is posi the second order equatid@6) will generally give rise to a

nonlocalized response, which can be written in the form

ngrad): %aZ(UEZ)_FWE‘F))e—Ziwpt_}_ %a* 2(”512)* _WEZ)*)eZiwpt.

) _ ) This response corresponds to the radiation field going out
Here, we will analyze the higher-order equatiddS)—  from the breather region, and, since the right-hand side of

(15) by making use of the strategy of systematically remov-gq, (26) is spatially localized and symmetric, this field

ing the appearing divergent parts as outlined in Sec.(IhC  should asymptotically correspond to two identical linear

analogy with the treatment of the continuous NLS-type equagayves propagating to the leftight) for n— —o (+).

tions in, e.g., Refy32—-34)). First, we show how the domi- Thys the boundary conditions can be written as

nating contribution to the time-independent frequency shift

observed in the numerical simulations above can be calcu- ul® W et n_+oo (32)

lated from the static part of the right-hand side of the second-

order equation(13). This frequency shift can be explicitly with g,=arcco¢l—(2w,—A)/2C) according to Eq(21).

taken into account by replacing in Eq. (10) with A,  Defining for general» the matrixM () [cf. Eq. (20)] as

+X2A,, whereA, is the unperturbed breather frequency and

B. Analysis of higher-order equations

A, the second-order shift to be determined. This implies that P Lo
the additional term ,¢,, will be added to the right-hand side MP=\ e, —o) (33
of Eq. (26). Writing the response to the static part(@b) as
79 =|al?(u®+iw®) with realu’® andw® then yields the functionsu(® and w!®) are seen from Eq(26) to be
determined by
[ {0y 2
M«»( | I WY [ (2UWo}
() B2 L2 a2 , M (2@p) = . (34)
{wy”} én al? 5> (BUR+Wp) (w2 | {3uz-w3}

(30 Since for generab every eigenvector oM(®) with eigen-
with M(© as defined by Eq(20). If the expansion of the value u is also an eigenvector () with eigenvalueu
right-hand side of Eq(30) in the complete set of vectors + w, the right-hand side can be expanded on the basis of
consisting of the eigenvectors ™(® (including the phase eigenvectors oM (including the zero-frequency modes
mode and the growth mode contains some component o he strength of the radiation field is then given by the
either of the two zero-frequency modes, the respopse  expansion coefficient for thécontinuous spectrumeigen-
will not remain bounded but diverge linearly with time. vector ofM(® with eigenvalue 2, since this corresponds
Thus, in order to remove this divergency, the frequency shifto the eigenvalueu=0 of M), and thus a spatially
A, must be chosen so that both these components are ideRonbounded response in E(B4). Using the orthogonality
tically zero. The component on the growth mode is trivially relation (24), this coefficient is simply the “overlap” be-
zero, while the component on the phase mode is obtained Hyveen the right-hand side of E(34) and the eigenvector of
applying the pseudoscalar produ28) with the vector cor- M@ with eigenvalue 2, calculated with the pseudoscalar
responding to the growth mode and using Bf). Demand-  product(23), which is generally nonzero.

ing this component to be zero yields Next, we show how the dominating contribution to the
af? decay of the internal mode amplitude as given by &®)
_|a dpy 2 > is obtained from the condition thg}, in the third-order equa-
Az_dj\/¢ zn: ¢“ﬁ(3un+wn)' 3D tion (14) should remain bounded. To this end, we assume a
ar slow time dependence of the internal mode amplitude of the

form a=a(\?t), and consider the response to the terms with
This is typically positive for the breathing mode, since thefrequencyw, on the right-hand side of E414) “corrected”
dominating contribution to the sum in E€B1) comes from by the additional terms -ia+A,a)(U,+W,)e '“pt
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+(—ia* +Aa*)(U,—W,)e! appearing as a consequence ofsion (10). Writing the response to this part a$f1‘”'))
including the time dependence af and the second-order — al?a(u® + w®)ye fept + %|a|2a*(u§13)*— W513)*)eiwpt

frequency shiftA, from Eq. (31) in the perturbation expan- yields

a 1 A,
[ i w_zau”+ (U WP =W, u@+ 2w, ul®) + Z(Uﬁwn+ 3W3)— an]

(3)
[ fus }> _ -

a 1 A
[ i|a|2aWn+ Bo(3U U+ WP+ 6U U + 7 (3UFH+U,WE) - éun}

A bounded response fat“? exists only if the vector on the Now, it is clear from Eqs(31) and(28) that the time depen-
right-hand side of Eq(35) has no component in the direction dence ofa will .|nduce a time dependence of the second-order
of the internal mode eigenvectofU,},{W,}), since this is frequency shiftA, of the form A,(\*), so that we can
the eigenvector corresponding to the eigenvalue zero dfXpress the total breather frequency up to ondems A (t)
M(@p). Using the orthogonality relatiof24), this component  =Ao+A?Az(A*t) +\*A,4, where a fourth-order correction
is obtained by application of the produ@?3) with the vector A4 has also been included. Then we must also take into
({U,}{W,}), and the condition that this component must be@ccount the time dependence of the breather shipey
zero determines the time evolution af Considering only ~Writing  ¢,(A(t)). As a consequence, the term
the absolute valuga|?, the resulting equation has the form —i(d¢,/dA)A,+ A4¢, will be added to expressiof87)
(drdt)(Jal?) + y|a|*=0, which has the desired soluti¢d8).  for R(*¥ in the right-hand side of Eq15), and writing the
The constanty is given by response to this total force @ =|a|*(u{*®+iw{*®) with

real u{*> andw{*® yields

2 ol 2U Wy Im(w(?) +(3U7 - W) Im(u?) ] ) 0bn:
_ {uy™} 1 A,—Im(RY™)
’ M o) T, -
a
2 Unt " {=Asdpn—Re(RY)}
8Cuw)|r,|?sing; The respons#'® will be bounded in time only if the right-
=—— >0, (36)  hand side of Eq(38) has no component either on the growth
E W, LoW, mode or on the phase mode, which gives two conditions for
n

the determination of\z and A,. Using Egs.(23)—(25), by
demanding the expansion coefficient for the growth mode to

where the second equality is obtained using E@i8), (32),  pa zero. we obtain

and(34), and the positivity ofy follows from the fact that, as

mentioned in Sec. Il B, the operatd}, is positive definite _ Ell ) 5 s
for all W, # ¢, [35]. Ap=—g7 2 {46 Wa Im(uf®) = Uy Im(w(?)
. . . ¢ N
Finally, we show how the continuous increase of the 2—°
breather frequency appears from the divergent response to dA
the static part of the right-hand side of the fourth-order equa- FIMUPW* )V + 612U -W- Im(u®@
tion (15). In its unmodified form, this part is given by (URWR )T @al 2UnWn Im(us™)
+(3Wa—UR) Im(wi) ]} (39)
1
R{*9=— §¢n|a|4{6un Re(ul?)+2wW, Rew®) (Similarly, A, is obtained by demanding the component on
the phase mode to be zerd@hus the dominating contribu-
+2iU, Im(w) — 2iwW,, Im(ul®) + 6(ul)? tion to the frequency growth should be of ordes~|al*, so

i that with the approximate time dependen(8) of the
(2)|2 (2)|2 (2)%0/(2)
+3[UR” P w2 20 Im (Ut wi) } internal-mode amplitude we obtain, qualitatively,
1
- =la|*2(3U2+W2)ul
4| H{2(3Un +Wo)n A(t)=Ao~la(0)|? Cl—sz , (40
yla
+(3U5—WAHRe(UP) +2U W, Re(w?)
) SN > @ which is in good agreement with the numerically observed
—2iU Wy Im(u™) +1 (U5 —3Wq) Im(wy™) - time dependence of the frequency shift shown in Fig).2

(37 However, the positivity of\ , is not easily seen from expres-
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sion (39), and therefore in Sec. Il C we will derive an alter- which is always negative for an internal mode excitation
native expression from which the positivity follows immedi- since|w,|<A. Thus we can combine the two balance equa-
ately, using the conservation laws for the norm andtions (42) and(44) and, using Eqs(9) and (45), obtain ex-

Hamiltonian, respectively. pression(28) for |a(t)| with y as in Eq.(36), together with
the following expression for the frequency growth rate from
C. Approach using Conservation |aWS WhICh ItS pOS|t|V|ty |S |mmed|ate|y seen:

We first consider the conservation la#) for the total

norm (3) contained in any large but finite region around the E (U§+Wﬁ)

_4Clal*r,f?sing, [

breather. Averaging over a time interfdlt+ 2/ w,] and A= ~-1 | >o0.
using Eqgs.(10) and (16), we can write the time-averaged dNy 2 U-W.
norm to second order ifa| (puttingh=1) as dA moonn
46
~2 2 |a(t)|2 2 2 o
(Mh(t)= 2 (A (D) +——(Up+Wp) |, (4D This approach also has the advantage that it is easily gen-

eralized to the case where the lowest harmonic that enters the

[Note that there will be no contribution at order 2 from the Phonon band ipw, with p>2, i.e., for the pinning mode
static second-order correctia? , since the renormalization €Xcitation whenA/C=<0.480. Then we can write the bound-
of the breather frequencyw according to Eq.(31) yields &Y fonﬁlﬁ'g’ﬂ?(gt Ehgt]'”f'”'t'es to lowest order énas iy,
3,4,ul¥=0] In the case when @, belongs to the phonon & p€ = ¥ P~ n—xoo, wherer,~1 and q,

band, we obtain the following balance equation, which is_ arccog(A — pwp)/2C+1) according to Eq(21). Conse-
correct up to ordefal*: quently, we can proceed exactly as above, writing down the

balance equations for the norm and Hamiltonian to order
1 dlal? |a|2P just by modifying the right-hand sides of Ed42) and
TR T > (U2+W?) 3 (44), respectively, by replacinta|* with |a|?P, r, with 1,
t n t g, with g,, and 2w, with pw,. Combining the balance
=3 (—o0)— I (+oo)=—4C|alr,|2sing., equations yields the general expressions for the time depen-
w(=e) =y (F2) [alfIre| b2 dence of the internal mode amplitude,

d(A) N,

(42)
where we have used Eg#), (6), and (32), and g, is as la(t)|= |a(0)|2 U D)
defined below Eq(32). [1+(p—1)ypla(0)[*P~“]HP

Similarly, we can use conservation la{8) for Hamil- .
tonian (1) together with the general expression for the _4pClr,|®sing,

n (4 \ >Xpres Yp=—— P>, (47)
Hamiltonian flux density(7) for a small-amplitude plane
wave l)[,ﬂ:Ae'(qn*w(Q)t), ; Uan
Jx=2|A]*Caw(g)sing, (43 which is the analog to the expression obtained with similar

rguments in Ref.33] for the continuum NLS models. Most

to write the balance equation for the total time-averageGnhqrantly, we obtain a general expression for the breather
Hamiltonian in the same region for the case of second—orde‘rrequenCy growth rate which is positive for g

radiation,
2 U2+w?
d<H>t :dH¢A+ a<H>I d|a| . 4C|a|2p|rp|2 Sinqp p; ( n n)
dt dA dlal? dt A=
dN,
= 22, U,W,
dA n

-1 | >0.
= Jp(=2) = I +2%)

(48)
=—4Cla|*|r,|*(2wp—A)sings, (44)

Thus, integrating Eq(48) using the time dependence from
which is also correct to ordea|*. The lowest order contri- equation(47) of the internal-mode amplitude, we obtain that
bution to the derivative){),/d|a|? can be obtained using the dominating contribution to the frequency growth gener-
the first equality in the equation of motid@) and its com-  ally can be written qualitatively as

plex conjugate as follows: )
A(t) = Ao~|a(0)]

D IH Iy | TH 3 1 Up-1)
I da  gyr da x| C,—C
t

HH) _ 1 (M) _
dlaj> a* oda

1
a* 2 -
" 1+(p=1) y,la(0)|? 2t
1 49
= SAS (W) +0, 3 UW,+O([al?), “9
" " Let us finally point out that the approach used in this
(45 section provides a simple physical interpretation of why the
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interaction between the breather and its internal mode 2.18
should, in addition to generating radiation, also lead to 2.16
breather growth. Since expressiéi) for the Hamiltonian
flux density of a small-amplitude plane wave is positive
when w(qg) andg have the same sign, the Hamiltonian en- 212 |
ergy for a plane wave always propagates in the same direc 2.1
tion as the wave itself. Thus the secoridr higher) order [Wno 2
radiation emitted from the breather region will always carry
away a positive amount of the Hamiltonian energy, or, 2.08
equivalently, negative Hamiltonian energy will flow into the 2.04
breather region. Moreover, from E(5) it is clear that the
contribution to the Hamiltonian from the internal mode al-
ways is negative and a monotonoudicreasingunction of 2 |
its amplitude, and thus the decay of the internal mode would 1.98
cause anncreaseof the Hamiltonian in the breather region.
Consequently, since the Hamiltonian of the pure breather is ¢
monotonously decreasing function of the breather frequency 32128 o
the breather should grow so that the total Hamiltonian of the
breather plus the internal mode decreases. A similar mecha 32126 |
nism was recently found to cause soliton growth in the para-
metrically driven continuum NLS equation in the regime of 32124 |
oscillatory instability{ 34], and this type of argument has also
been used to explain the “quasicollapse” of a broad excita-§ 3,120 |
tion to a narrow localized state in the two-dimensional =
DNLS equation 37].

-
1T T |

0 200 400 600 800 1000 1200
time

ai
3.212 i 20752 b
i p <IWngl®t
2075

IV. BREATHER INTERACTING R 2ome ]

WITH STANDING-WAVE PHONONS 20746
We choose, as in Sec. lll, the initial perturbatieq{0) to 3.2116 . : L & B
be an eigensolution of the linearized equati¢t®, but now ° 200 400 e 800 1000 1200

we consider the case of a spatially extended perturbation. ] ) . o .
Without loss of generality, choosing a solution of the form of FIG. 4. Time evolution of a breather with an initial perturbation

Eq. (16) with positive frequencyw, yields the asymptotic in the direction of an extended eigenmotpatially symmetrig
behavior P with q<q.. Parameters areA=1.0, w,~2.31 (@~1.22), a

~0.0383, andC=1. (a) shows the time evolution of the central-site
intensity | l/fn0|2, (b) (main figure shows the total norm contained in
a region of 120 sites around the breather, and the indé) ishows
the time averagé| ¢, |°): -

U, ,W,— cogqn+4), nh—*ox, (50)

where the wave vectog (0O<qg<) is determined by the
dispersion relatior{21), and 6 is the phase shift across the such that for 8<q<q, second-order radiation will be emit-
breather. Thus the excitation of an extended eigenmode coted from the breather region, while faj.<q<= (A/2
responds to an interaction between the breather and a nor-2C<w,<A+4C) all multiples of w, are outside the
propagating, standing-wave phonon with small amplitade phonon band, and no higher-order radiation is emitted. As
As mentioned in Sec. |, these standing-wave phonons argill be shown below, these two regions yield qualitatively
generally unstable, but since the instabilities become expddifferent scenarios for the long-time evolution of the per-
nentially weak in the small-amplitude limit they are expectedturbed breather. We also note that for>4C we haveq,
to have very little effect on the breather for the perturbation=0, so that for the highly localized, high-frequency breath-
sizes and time scales considered in this section. We wilkrs no phonons can generate higher-order radiatiorote
return to the effects on the breather of these instabilities imso that there are no internal modes in this regirRarther-
Sec. V, where larger perturbations are considered. more, we always havg.< /2, so that the regime of higher-
In contrast to the case of excitation of a localized internalgrder radiation generation is a subset of the regimeq0
mode discussed in Sec. lll, where higher-order radiation al= /2 where modulational instability fotraveling plane
ways was emitted from the breather region, conditiai) waves occur$9].
yields that for the standing-wave perturbation the breather | et uys first discuss the case< (.. A typical example of
will radiate to higher order only ifA<w,<A/2+2C, s0O  the long-time evolution of a breather interacting with a
that bothwp and 2LL)p are inside the phonon band. In terms of Sma”_amp“tude Standing_wa\/e phonon thiqc is illus-
the phonon wave vectar, this means that there is a critical trated by Fig. 4. As seen from Fig(&}, the amplitude of the

valueq, oscillations remains essentially constant in time, but a closer
inspection reveals that the average valuﬁ/qfJ |2 asymptoti-
Qo= arcco% A ) (51) cally increaseswith an apparently constant rdieee the inset
¢ 4C)’ in Fig. 4b)]. Similarly, Fig. 4b) also shows that the total
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norm contained in any finite region around the breather asHamiltonian energy into the breather region, which is ab-
ymptotically increases linearly with time. We find that thesesorbed by the breather by increasing its frequency and maxi-
results are generic for all cases when the phonon wave vectatium amplitude. This process is similar to the one observed
q<(. (the spatial symmetry of the phonon is not importantin Ref. [38] for two-channel phonon scattering on breathers
for the asymptotic behavigrand thus we conclude that in in a Klein-Gordon model with a Morse potential; however,
this regime, the breather can “pump” energy from the pho-in the latter case the second outgoing wave resulted from a
non (which is infinite for an infinite system and thereby yesonance in the linearized equations, and were therefore of
grow. . _ ... the same order of magnitude as the incoming wave. More-
In the same spirit as for the internal mode excitation ingyer the outcome in this case was breather decay, since the

Sec. Il C, we can give a simple argument based on the Consne 4y of 4 Klein-Gordon breather is an increasing function

servation laws to motivate why the generation of :secondbf its amplitude.

order radiation should lead to breather growth. To this end, Considering now the regime= g, where all multiples of

we assume that the initial standing-wave phonon is infinitely are outside the phonon band. the most important conclu-
extended, and that far away from the breather a stationary.P f ¢ pn ! i i t'p s that
regime will be reached corresponding to the following lon from our extensive numerical investigations 1S that we

. never observe breather growtinstead, we sometimegut
boundary conditions: g | S
not alway$ observe a very slow decrease(¢t0n0| )¢, and

Pn—[(ae™ I+ resian) e ioptqy el (Faan =200 gl AL an increase of the fluctuations around this mean value. This
behavior is illustrated by Figs.(8 and 5b). A possible
n—*o, (52)  interpretation of these results is that, since the higher har-

. .. monics which are created by the breather-phonon interaction
Thus we have taken into account the second-order rad|at|o(51annot propagate, they stay trapped around the breather

with frequency 2», generated at the breather region, bUtThus this could lead to a transfer of energy from the “pure”

have neglected possible higher-order radiation; moreove'breather, which acquires more and more internal frequencies

thg resonance a.t the original phonon frequem@ in the and becomes a ‘“chaotic breathef21]. Another possible
third-order equatior{14) has been taken into account by al- . A ) S .
interpretation is that the increase of the oscillation amplitude

lowing the incoming and outgoing complex amplitudesnd . . : . i .
f to be different. We can then, in analogy with E¢2) and is connected with the oscillatory instabilities of the standing
X graves; as we will show in Sec. V, these instabilities provide

(44), write the balance equations for the total norm an hanism for breather d H ;
Hamiltonian contained in a region around the breather, ave@ Mechanism for breather decay. HOWEVET, In Some cases,

aged over a time intervdl,t+ 2/ w,] as illustrated by Figs. &) and 5d), the oscillation amplitude as
' P well as its average value apparently approaches a constant

d(N) AN, limit value. At present we have no explanation for this be-
T =HA=<JN(—C>C)>t—(.Jj\/(+<><>)>t havior (as will be discussed in Sec. V, there exist exact
“phonobreather” solutions which could be candidates for
=4C[(|al?~|r|?sing—|r,|?sings] such a final state, but they are unstapieis possible that the
time ranges that we were able to study with sufficient nu-
(53 merical accuracy in these cases simply were too short to
observe the scenario described by Figs) and 5b).
To conclude this section, we repeat our main result that
d(Hy, dH,. b_reather growth is observed if and onlygit< g, whereqc_ is
T ZHAI(JH(—OO)N—(JHHOO)% given by Eq.(51). The fact thaig,=0 for A>4C thus im-
plies the existence of an upper limit beyond which the
:4C[(|a|2—|r|2|)(wp—A)sinq breather cannot grow with the type of perturbations consid-
ered here. We would also like to relate our results to recent
—|ral*(2wp=A)sing,], (54 numerical simulations of breathers interacting wttopa-
) _gatingphonons in Klein-Gordof39] and FPU[21] lattices.
respectively. Here, we have used the facts that the timerq, the Klein-Gordon lattice with &oft) Morse on-site po-
average of the norm current densi§) and the Hamiltonian  gnial, phonons with a small wave vectpwere observed to
flux density (7) are adc_iitive quarjtities for _small-amplitude yield breather growth, while phonons with largecaused
plane waves, and that in the stationary regime the mode ankeather decay. For a FPU lattice with hard anharmonicity,
plitudesa, r, andr, are time independent. Combining Egs. e opposite situation was observed, i.e., smafihonons
(53) and(54) and using Eq(9), we obtain that the breather .5 ,seqd breather decay and laggphonons breather growth.
frequency grows with a constant rate given by The fact that the situation for the hard FPU lattice was op-
posite to that of the soft Klein-Gordon lattice could be ex-

and

2 .
A= M _ (55  Pected, since in the former case the modulational instability
dN, occurs for largeq, whereas soft Klein-Gordon and DNLS
dA lattices withC>0 are modulationally unstable for smaijl

However, we stress that the relation between plane-wave
The physical interpretation of this result is, similarly as for modulational instability and breather growth is nontrivial,
the case of internal mode excitation, that the generation ofind at least for the case considered in this paper the critical
higher-order radiation results in a net flow of negativevalueq. for breather growth from interaction with standing-
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FIG. 5. Time evolution of a breather with initial perturbations in the direction of extended eigenmodeg>dth Parameters ard
=1.0 andC=1, and(a),(b) w,~4.93 (q~2.88),a~0.0644,(c),(d) w,~2.72 ([~1.43),a~0.0383.(a) and(c) show the time evolution of
the central-site intensitwn0| , while (b) and(d) show its time-average.

Since the phonobreathers are exact solutions consisting of
a breather part and a standing-wave part, one could expect
them to be attractors for the initial conditions considered in
Sec. IV. However, as was shown recent®7], generically
for soft Klein-Gordon and DNLS models wite>0, all
phonobreathers with phonon wave vectpt 7 will be lin-

In this section, with the aim of describing the interaction early unstableif, for fixed phonon amplitudes, the linear
between a breather and a standing-wave phonon with & nogoypling C is larger than some threshold val@:,(a,q)
negligible amplitude, we will take a slightly different point (j e away from the anticontinuous linit(For lattices with

of view than in Sec. IV. Instead of choosing an exactharg potentials and DNLS equations wih<0, the stable
breather solution as the initial conditions and adding a per:

turbati ding t . de of the li ! (ghonobreather hag=0.) These instabilities are caused by
urbation corresponding o an €igenmode of th€ linearized, , oscillatory instability of the standing-wave phonon itself,
equations, here we will consider initial conditions which are

exactphonobreathef2] (or nanopteroi solutions. By defi- which can be understood by considering the construction

nition, a phonobreather consists of a spatially IocalizeoOf a nonlinear standing wave with wave vectpelose tom

breather on top of a spatially extended tail which is a non@t the anticontinuous limi€=0 by introducing a periodic

linear, standing-wave phonor(There are also solutions 2@y Of discommensurations or “defects” in the non-
where the tail is a propagating waya6], but we will not  linear phonon W'tg wave vectorr and amplitudea, ¢,
discuss them further hejePhonobreathers exist generically =a(— 1)”e‘i(4c‘|a‘ )t which is linearly stable for ala and

for nonlinear lattice-equationésee, e.g., Refs[2,6]), but  C>0 [9]. In the anticontinuous limiC=0, when 7/2<q

their existence normally requires an integer relationship be<, each defect consists of one extra site wit)=0 added
tween the breather and phonon frequencies. However, for the the 7= phonon, which consequently suffers an additional
DNLS equation phonobreathers exist fmy (rational or ir-  phase shift ofs across each defect. Fo@q< #/2, each
rationa) relation between the two frequenciddl], as a con- defect consists of several consecutive zero-amplitude sites
sequence of the additional invariance of the equation undewith associated phase shifts general method for generating
global phase transformations. the anticontinuous coding sequence for standing-wave

wave phonons differs from the critical valwg= /2 for
modulational instability of traveling waves.

V. BREATHER GROWTH AND DESTRUCTION
FROM STANDING-WAVE INSTABILITIES
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phonons from a circle map was described in R&f]); in  with the asymptotic behavior,(0)~a sin(gn),n— =+ in
this case it is also useful to consider the periodic repetition ofhe continuum limitC/|a|>—. (Note that this solution is
sites with¢,= = a as defects of the zero-amplitude state. antisymmetric only aC=0.)

The limit case of one isolated zero-amplitude defect, (ii) From Eq.(56) we can construct a symmetric solution
which is a discrete counterpart of the dark-soliton solution offor q> /2 by introducing an additional phase shift afat
the continuum NLS equation, was investigated in R&0].  one side of the breather site, giving, fg=27/3,

The linear stability analysis of this mode showed that, al-

though it is stable closze to the anticontinuous limit, it suffers {n(0)}={...,—a,a0,-a,a,0,-a,a,b,a,

a bifurcation forC/|a|*=C,~0.0765, where two pairs of _ B

eigenvalues of the eigenvalue probld20) go out in the 2,0a,-a,0, ...}, 7
complex plane. The resulting oscillatory instability occursyith the asymptotic behaviot,(0)~a cos@n=m/2),n—
due to a resonance between a mode localized around thes in the continuum limit.

defect(the defect pinning modeand linear radiation modes. (i) For g=Mm/N</2, N even, the number of con-

It was shown that, for finite systems, the mode recovers itgecytive zero-amplitude sites is odd and the antisymmetric
stability above some upper critical value®f|a|” (since the  gnticontinuous solution is for, e.qy= /4,

wavelength of the resonating linear modes becomes larger

than the system sizehowever, this critical value increases {yn(0)}={...,0,0,02,0,0,0,-a,0,0,0a,0b,0,
with system size, so that in the limit of an infinite system the
instability persists for alC/|a|?>>C,, but with a growth-rate —a,0,0,02,0,0,0--a, .. .} (58)

that decreases in an exponential-like fashion when approac
ing the continuum limitC/|a|?2—o. This instability was
shown to result in the defect becoming mobiie NLS
terms, the stationary “black” soliton with zero minimum
intensity transforms into a moving “gray” soliton with non-
zero minimum intensity and radiation being emitted. In
terms of the phase dynamics, this describes a moving, slowly {¥,(0)}={...,0,0,02,0,0,0-a,0,0,08,00,0,

spreading phase kink.

The instability scenario for the standing-wave phonons is a,0,0,0-2a,0,0,0a, ...} (59
basically the same as for the isolated defect, with the essen-, ) ) )
tial difference that the localized pinning modes associatedVith the asymptotic behaviay,(0)~ —asin@n=/2),n—
with the individual, periodically repeated defects now will = in the continuum limit.
form a continuous “defect band.” In general, the Krein sig- (V) Forg=Ma/N</2, N odd, the number of consecu-
nature[2] of this defect band is opposite to that of the bandslive zero-amplitude sites is even, and we must add an extra
associated with the nonzero amplitude sitgg (for 0<q  Sit€ t0 obtain the antisymmetric anticontinuous solution,
< /2 there are generally several defect bands, but they wilivhich for, e.g..q=m/3 becomes
have the same Krein signatyyend as a consequence reso- _ _
nances between the bands will occur if the linear coupling {#(0)}={....0,08,0,0~2,0,08,0b.0,
is large enough, giving rise to similar oscillatory instabilities —a,0,0a,0,0-a,0,0a, ...}, (60)
as described abové&letails were given in Refl27]). We
remark that earlier analys[gt1] of standing waves in non- behaving asy,(0)~acogq(n+1/2)=q/2],n— *o, in the
linear lattices, based on a quasicontinuum approximation, didontinuum limit. (A solution with similar properties is ob-
not reveal these instabilities since their origin is the discretd¢ained by instead removing one zero-amplitude site; how-
nature of the lattice. ever, its symmetric counterpart is always unstable.

Let us now return to the main objective of this section, (vi) The symmetric counterpart of Eq60) for q
namely, to study the effect of the oscillatory standing-wave=M #/N<7/2, N odd, is constructed by a phase shift as
instabilities on the phonobreathers. We find that the familiesbove, giving, forq= /3,
of phonobreathers which are stable close to the anticontinu-
ous limit, and whose tails approach harmonic standing waves ~ {#a(0)}={...,0,08,0,0,-a,0,02,0b,02,0,0,
in the small-amplitude limit, can be constructed from anti- _ _
continuous standing-wave solutions @=0, placing the 2,0020,0~a, ...} (6
breather at a zero-amplitude site of the phonon and adjustingijth the asymptotic behaviory,(0)~ —asin(q(n+ 1/2)
it so that the resulting solution is either symmetric or anti-+ (q+ 7)/2),n— = in the continuum limit.
symmetric around the breather site. Denoting the anticon- A typical example on the time-evolution for an initially
tinuous breather amplitude Hy (the phase of the breather yery weakly perturbed phonobreather with a phonon wave
site is unimportant whetb|#[a| [11]), this yields the fol-  yector g>=/2 and a phonon amplitude small but non-

rB’ehaving asy,(0)~acos@n),n—=* in the continuum
limit.

(iv) From Eqg. (58), the symmetric solution forq
=Ma/N<m/2, N even, is constructed by a phase shift as
above, giving, forg= /4,

lowing possibilities. _ _ o _negligible compared to the breather amplitude, is illustrated
(i) Forg> 77/2 the antisymmetric anticontinuous solution j, Fig. 6.[The example in the figure belongs to tyfg but
(hereq=27/3) is similar dynamics is also observed for spatially symmetric
{yn(0)}={...,—a,a,0—a,a,0—a,a,b, states of typeii).] We can clearly distinguish two different

steps leading to the final breather destruction. The first step is
-a,a,0,—a,a,0, ...}, (56) the linear oscillatory instability described above, which leads
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FIG. 6. Time evolution of the phonobreattiég. (56)] with g FIG. 7. Time evolution of the phonobreatHétq. (58)] with g

=2m/3 for a system of 120 siteperiodic boundary conditions =m/4 for a system of 120 site§eriodic boundary conditions

gsgg;segxnlff ééhethneu?ﬁ;fg:]t;fggjé'ggyerrfrs'ggg (t;f:r:gir fre|E)erturbed only by the numerical truncation errors. The breather fre-
b= 499, ph= — &

amplitudea~0.2), andC=1. (a) shows|(t)|2, while (b) (main  AUENCY i$A,=2.2, the phonon frequency,,=—0.5 (phonon am
. . . o plitudea~0.3), andC=1. (a) shows|,(t)|?, while (b) shows the
figure) shows the intensity of the breather central sitg |°. The | i ; >

. . . o 0 intensity of the breather central site, |*.

inset in (b) shows the inverse participation numbeR 0

=N 22| ¢n|*, which gives a qualitative measure of the degree ofit js necessaryat least for a finite systenthat the phonon
localization. amplitude is not too small compared to the breather ampli-
tude. If we increase the breather amplitude in Figo6de-
to the generation of new internal frequencies of the breathecrease the phonon amplitydsufficiently, we find that al-
and to the movement of the defect sites in a similar way ashough an oscillatory instability develops, the fluctuations
for the case of an isolated defect. In the second step, thereated in the second step will be too weak to cause the
moving defects start interacting, and a close inspection obreather to decay, and it will live seemingly forever as a
Fig. 6(@ shows that neighboring defects tend to merge andchaotic phonobreather.” The absence of decay for small
create regions of accumulated phase fluctuations travelingerturbations can be viewed as a consequence of the fact that
around in the lattice. These will interact with the breatherthe single-site DNLS breather is nonlinearfizyapunoy
and apparently cause its decay. When the breather has dgtable for norm-conserving perturbations, in the sense that
cayed sufficiently to have an excitable pinning mode, it will | ,,(t)| remains arbitrarily close to the breather for all times
start to move in the lattice but with a rapidly decreasingif the initial perturbation is small enougfl5]. Thus it is
amplitude, and it will finally be destroyed. We have at clear that, for finite systems, the breather cannot be destroyed
present no complete understanding of the mechanism bynless the phonon amplitude exceeds some critical value,
which the interaction of the breather with the moving “phasewhile nothing can be said about the infinite system, since any
kinks” causes its decay, but we remark that a similar sceinfinitely extended phonon obviously has an infinite norm.
nario was observed when adding an external, parametric With 0<q< /2, the first step resulting from the oscilla-
white noise ternj42] to the DNLS equation. In that case, the tory instability occurs in a similar way as far> 7/2: the
white-noise approximation allowed a qualitative understandbreather acquires new frequencies and the small-amplitude
ing of the breather decay as a consequence of phase fluctusites of the phonon start moving. By instead making the in-
tions by using a collective coordinate approach. terpretation that the sites with nonzero amplitude at the an-
However, to observe this scenario for breather destructioticontinuous limit are defects in the zero-amplitude state,
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their movement can be seen as a consequence of the repbkyond this value with the type of small-amplitude perturba-
sive interaction between spatially separated, small-amplitudgons considered here. To analyze the interaction between
breathers with opposite phases observed, e.g., in[Réf.  breathers and standing-wave phonons of small but non-
We also observe, similarly as far>=/2, the merging of negligible amplitude, we considered the long-time evolution
neighboring defects, but in this case their interaction with theof weakly perturbed exact phonobreather solutions. The in-
breather will not lead to breather decay, but rather to breathestabilities of these, originating in oscillatory instabilities of
growth if the original amplitude of the breather is not too the nonlinear phonons, were shown to lead to propagating
large. A typical example is illustrated in Fig. 7. It can be seeninhomogeneities whose interaction with the breather pro-
by a careful inspection of Fig.(@ how the merging of vided a mechanism for breather decay and destru¢titren
small-amplitude sites results in localized humps of largetthe phonon wave vectog> 7/2) or growth Q<w/2 and
amplitude reminiscent of small-amplitude moving breathersA <4C).

traveling around in the lattice. The interaction of these As already mentioned in Sec. I, the existence of the two
humps with the original breather leads to the growth of theconserved quantitiegl) and (3) makes the DNLS equation
latter in a similar way to that observed in Ref49-21]. nongeneric among nonlinear lattice equations, and it is there-
However, this growth stops when the breather amplitude hafore necessary to investigate to what extent the results ob-
reached a critical value which is close (but apparently tained in this paper apply also for Klein-Gordon and FPU
smaller thai that corresponding to the limit valué=4C lattices. We plan to address these questions in a forthcoming
for small-amplitude perturbations found in Sec. (e latter  publication, but let us stress here that the perturbational ap-
corresponds tcbz,/;no|2~5.65). The final state also here ap- proach used here for the DNLS equation needs to be modi-
pears to be a chaotic phonobreather; we have followed théed to account for the fact that, generically, the dynamics of
time evolution of this kind of state for times up to®@ith-  the breather also involves higher harmonics of its fundamen-
out seeing any signs of decay. Also, if the initial breathert@l frequency. Moreover, the approach used in Secs. Ill C
frequency is chosen above the critical value 4C, we typi- ~ @nd IV, based on conservation laws, cannot be directly ap-
cally do not observe breather growth; instead the mean valugliéd in the absence of a second conserved quantity. How-
of the chaotic amplitude oscillations resulting from the oscil-€ver, in view of the wide applicability of the DNLS equation

latory instability remains close to the initial amplitude. (and in particular its appearance as a limit case of general
lattice equations, as mentioned in Secwe believe that the
VI. CONCLUDING REMARKS mechanisms for breather growth and destruction described in

this paper are essential ingredients for corresponding pro-
Investigating the interaction between discrete nonlineacesses in general lattice models.

Schralinger breathers and small perturbations, we have
found, first, that exciting an internal mode of the breather
always leads to a slow energy transfer to the breather, i.e., to
breather growth. Furthermore, we found that a DNLS We thank Yu. S. Kivshar for giving us an early preprint of
breather can pump energy from a small-amplitude standingRef. [33], I. V. Barashenkov for directing our attention to
wave phonon, provided that the phonon wave vector iRRef. [34], and A. M. Morgante for discussions on phono-
smaller than the critical valug. given by Eq.(51). In both  breathers and standing-wave instabilities. M. J. acknowl-
cases, the mechanism for breather growth involves thedges a Marie Curie Research Training Grant from the Eu-
higher-order generation of radiating modes. Since thisopean Community. A preliminary version of these results
mechanism disappears at a threshold vale4C of the  was presented at the conference Nonlinearity(198raklion,
breather frequency, it is impossible for a breather to gronMay 10-14, 1998
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