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Growth and decay of discrete nonlinear Schro¨dinger breathers interacting with internal modes
or standing-wave phonons

Magnus Johansson and Serge Aubry
Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France

~Received 17 September 1999!

We investigate the long-time evolution of weakly perturbed single-site breathers~localized stationary states!
in the discrete nonlinear Schro¨dinger equation. The perturbations we consider correspond to time-periodic
solutions of the linearized equations around the breather, and can be either~i! spatially localized or~ii ! spatially
extended. For case~i!, which corresponds to the excitation of an internal mode of the breather, we find that the
nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather
amplitude and frequency. In case~ii !, corresponding to interaction between the breather and a standing-wave
phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of
radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition
yields a limit value for the breather frequency above which no further growth is possible. We also discuss
another mechanism for breather growth and destruction which becomes important when the amplitude of the
perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-
wave phonons.

PACS number~s!: 42.65.Tg, 63.20.Pw, 05.45.2a, 63.20.Ry
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I. INTRODUCTION

The concept of nonlinear self-localization is of impo
tance for many physical phenomena, and has appeared
number of different contexts since the pioneering work
Landau@1# on the polaron problem in the 1930s. In rece
years, much attention has been devoted to studies of spa
localized and time-periodic vibrational modes in anharmo
lattices~see, e.g., Refs.@2,3# for recent reviews!. The general
existence of such modes, which have been termeddiscrete
breathers, or intrinsic localized modes, as robust solutions to
nonlinear ~and in general nonintegrable! lattice-equations
was suggested in 1988 by Takenoet al. @4#. Later, their ex-
istence was rigorously proven under rather general co
tions by MacKay and Aubry@5# by considering the limit of
uncoupled oscillators~the so calledanticontinuousor anti-
integrablelimit !. By means of the implicit function theorem
they showed that the trivial solution of a single-site localiz
vibration at the uncoupled limit could be continued into
localized breather solution for nonzero coupling between
oscillators, provided that the individual oscillators are anh
monic, and that no multiples of the breather frequency re
nate with the bands of linear excitations~phonons!. As was
demonstrated first in Ref.@6#, the ideas of the rigorous proo
can be turned into an efficient numerical scheme to calcu
breather solutions to any desired accuracy. Since disc
breathers appear under very general conditions in an
monic lattices, and provide efficient means of energy loc
ization, they have been proposed as candidates to explai
experimentally observed localization of energy in many d
ferent physical areas, e.g., DNA dynamics@7#.

Although, from fundamental and mathematical vie
points, the existence theorems for discrete breathers pro
an important cornerstone for understanding the dynamic
anharmonic lattices, it is probably of even greater phys
importance to understand the behavior of a system clos
PRE 611063-651X/2000/61~5!/5864~16!/$15.00
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an exact breather solution. By linearizing the lattice eq
tions around the exact solution, one can obtain an appr
mate description of the dynamics of weakly perturb
breathers, and in particular the linear stability properties
termining whether small perturbations will grow expone
tially or not. It was shown in Refs.@2,5# that the simplest,
single-site, breathers are generally linearly stable close to
uncoupled limit, and numerical investigations using stand
Floquet analysis~see, e.g., Ref.@8#! have shown that linearly
stable breathers typically also exist for rather large values
the intersite coupling. However, when considering tim
scales large compared to the breather period, the mere li
stability of a breather no longer guarantees the eternal e
tence of the breather in the presence of small perturbati
and there are still many questions remaining concerning
different mechanisms by which breathers may grow or
cay, or possibly finally be destroyed. If the breathers hav
finite lifetime, the determination of this lifetime is of larg
importance for understanding the role of breathers in r
systems.

It is the purpose of this paper to investigate in more de
some mechanisms for breather growth and decay in a sim
model system, the discrete nonlinear Schro¨dinger ~DNLS!
equation. The DNLS equation is generic in the sense tha
describes slowly~in time! varying modulational waves in
discrete systems in a ‘‘rotating-wave’’ approximation~see,
e.g., Refs.@9,10#!; however, due to its extra symmetry prop
erties ~see Sec. II! it exhibits some nongeneric feature
among discrete systems, e.g., exact quasiperiodic brea
@11#. The single-site breathers of the DNLS equation are s
tionary states which are linearly stable for all intersite co
pling, and which reduce to the NLS soliton in the continuu
limit ~see, e.g., Refs.@5,11–15#!. An important application
appears in nonlinear optics, where the single-site DN
breather describes a discrete spatial soliton in an array
weakly coupled waveguides@16,17#; recent experimental ob
5864 ©2000 The American Physical Society
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PRE 61 5865GROWTH AND DECAY OF DISCRETE NONLINEAR . . .
servations@18# confirm the successful use of the DNL
model in this context.

Some recent numerical investigations@19# have shown
that DNLS breathers can be spontaneously created f
noisy backgrounds, in a similar manner as was previou
observed for Klein-Gordon@10,20# and Fermi-Pasta-Ulam
~FPU! @21# lattices. Typically, this spontaneous energy loc
ization was observed to occur in two steps. In the first ste
large number of small breathers are created as a result o
modulational instability @9,10,22,23# of traveling plane
waves occurring for certain wave number regimes. The s
ond step proceeds by inelastic collisions between the bre
ers, in which the large breathers grow systematically at
expense of the smaller ones. Thus the outcome will b
small number of large breathers, together with some rem
ing background of small-amplitude~phonon! oscillations.
However, it can generally not be concluded from numeri
simulations that this is the true final state of the system,
actually long-time simulations for FPU chains@21# also re-
vealed a third step, in which the interaction with the phon
oscillations leads to the final destruction of the breather
the equipartition of energy. Thus, to elucidate the nature
the final states for typical initial conditions in anharmon
chains, it is necessary to obtain a better understanding o
mechanisms for interactions between breathers and sm
amplitude perturbations.

In this paper, we take the following approach. As an i
tial state, we consider an exact single-site breather solu
and add a small perturbation corresponding to a tim
periodic eigensolution to the equations of motion lineariz
around the breather. These solutions, which can be e
localized or extended in space, constitute a complete se
which an arbitrary initial perturbation can be expanded. T
localized solutions correspond to internal modes of
breather@13,24–26#, while the excitation of an extended so
lution corresponds to a standing-wave~i.e., nonpropagating!
phonon interacting with the breather. In Sec. II we descr
the model and outline the perturbational approach wh
forms the analytical backbone for an interpretation of
numerical results presented in Secs. III and IV. Section
discusses the long-time consequences of the interaction
tween the breather and its internal modes, while Sec.
concerns the interaction between the breather and sm
amplitude standing-wave phonons of different wave vecto
We will find that, in both cases, a simple argument based
conservation laws can be used to obtain a sufficient condi
for breather growth. In Sec. V we discuss another type
mechanism for breather growth and destruction, which
comes appreciable when the amplitude of the standing w
is non-negligible~and consequently the perturbational a
proach can be expected to fail!, and which has its origin in
the recently discovered oscillatory instabilities of the nonl
ear standing-wave phonon@27#. Finally, we make some con
cluding remarks in Sec. VI.

Concerning the numerical simulations of the dynam
presented in this paper, unless otherwise stated they alw
apply for a system of infinite size~finite size systems are
considered only in Sec. V!. The simulations have been pe
formed either by using very large system sizes or by appe
ing damping regions of various sizes to the boundaries; in
m
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cases we have carefully checked that the boundary co
tions have no essential influence on our results.

II. MODEL AND FRAMEWORK FOR THE
PERTURBATIONAL APPROACH

A. Model

We consider the following form of the DNLS Hamil
tonian with canonical conjugated variables$ icn%,$cn* %:

H~$ icn%,$cn* %!5(
n

S Cucn112cnu22
1

2
ucnu4D[(

n
Hn .

~1!

This yields the DNLS equation

i ċn5
]H
]cn*

52C~cn111cn2122cn!2ucnu2cn , ~2!

which, in addition to Hamiltonian~1!, also conserves the
total excitation norm~or power in nonlinear optics applica-
tions!

N5(
n

ucnu2[(
n

Nn . ~3!

The conservation laws for the norm and Hamiltonian a
through Noether’s theorem, related to the invariance of
DNLS equation~or, more precisely, of its corresponding a
tion integral! under infinitesimal transformations in phas
(cn→cnei e) and time (t→t1e), respectively. Defining the
‘‘norm density’’ Nn and ‘‘Hamiltonian density’’Hn as in
Eqs. ~3! and ~1!, respectively, the conservation laws can
expressed in terms of continuity equations as

dNn

dt
1~JN!n2~JN!n2150, ~4!

dHn

dt
1~JH!n2~JH!n2150, ~5!

with the (norm) current density

JN52C Im@cn* cn11# ~6!

and theHamiltonian flux density

JH522C Re@ċn11~cn11* 2cn* !#, ~7!

respectively. These conservation laws are discrete analog
those existing for the continuous NLS equations with gene
nonlinearities~see, e.g., Ref.@28#!; however, there is no dis
crete counterpart to the momentum conservation law si
the discrete equation has no continuous translational sym
try in space. Furthermore, we note that the transforma
C→2C in Eq. ~2! is equivalent tocn→(21)ne2 i4Ctcn ,
and thus for the rest of this paper we will only considerC
.0 without loss of generality.

The single-site DNLS breather is a stationary-state so
tion to Eq.~2! of the form

cn~ t !5fn~L!eiLt, ~8!
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where the time-independent shape$fn% depends on the fre
quencyL and is spatially localized with a single maximu
at a lattice site. The breather exists for allL/C.0; the limit
C→0 ~or L→`), corresponding to the anticontinuous lim
where$fn% is localized at a single lattice site, while the lim
L/C→0 corresponds to the continuous limit, where$fn%
approaches the NLS soliton. The single-site breather
ground state solution to Eq.~2! in the sense that it minimize
Hamiltonian ~1! for a fixed value of norm~3!, i.e., dH
1LdN50, where the frequencyL appears as the Lagrang
multiplier ~see, e.g., Ref.@15#!. The norm for the single-site
breather,Nf , is known to be a monotonously increasin
function of L, while the HamiltonianHf is negative and
monotonously decreasing~see, e.g., Refs.@29,30#!. From the
minimization condition, these functions will be related as

dHf

dL
52L

dNf

dL
. ~9!

To describe the dynamics close to the breather~8!, we
introduce the following perturbation expansion:

cn~ t !5$fn1len~ t !1l2hn~ t !1l3jn~ t !

1l4un~ t !1•••%ei *Ldt, ~10!

where en(0) is the initial perturbation andhn(0)5jn(0)
5un(0)5•••50. Thus, as for the usual stability analysis
stationary states~see, e.g., Refs.@12,31#!, the perturbation is
applied in a frame rotating with the breather frequencyL.
Substituting into Eq.~2! and identifying coefficients for con
secutive powers of the small parameterl yields an infinite
set of equations, which from zeroth to fourth orders read

2Lfn1C~fn111fn2122fn!1ufnu2fn50, ~11!

L~L!$en%[$ i ėn1C~en111en2122en!12ufnu2en

1fn
2en* 2Len%50, ~12!

L~L!$hn%52fn* en
222fnuenu2, ~13!

L~L!$jn%522fn* enhn22fn~en* hn1enhn* !2uenu2en ,
~14!

L~L!$un%522fn~enjn* 1en* jn1uhnu2!2fn* ~2enjn1hn
2!

2en
2hn* 22uenu2hn , ~15!

where the operatorL(L) ~which is linear over the field of
real numbers! is defined from the first equality in Eq.~12!.
The zeroth order equation~11! gives the breather shape$fn%
~which for the single-site breather can be assumed real
positive without loss of generality!, while the first order
equation ~12! is the linearization of the DNLS equatio
around the breather.

B. Solutions to the linearized equations

To obtain the solutions to the linearized equations~12!,
we proceed in a similar way as is usually done for contin
ous generalized NLS models~see, e.g., Refs.@32–34#! and
introduce a substitution of the form
a

nd

-

en~ t ![en
(r )~ t !1 i en

( i )~ t !

5
1

2
a~Un1Wn!e2 ivpt1

1

2
a* ~Un* 2Wn* !eivpt,

~16!

so that

en
(r )~ t !5Re@en~ t !#5Re~aUne2 ivpt!,

~17!
en

( i )~ t !5Im@en~ t !#5Im~aWne2 ivpt!.

Substituting Eq.~16! into Eq. ~12!, and assumingfn real,
yields

L0Wn[2C~Wn111Wn2122Wn!2fn
2Wn1LWn5vpUn ,

~18!

L1Un[2C~Un111Un2122Un!23fn
2Un1LUn5vpWn ,

~19!

where the operatorsL0 andL1 are Hermitian. Thus we can
obtain the eigenfrequenciesvp and the corresponding eigen
vectors ($Un%,$Wn%) from matrix diagonalization:

M (0)S $Un%

$Wn%
D[S 0 L0

L1 0 D S $Un%

$Wn%
D 5vpS $Un%

$Wn%
D . ~20!

To make a connection to earlier work@2,8#, we remark that
the vector ($en

(r )%,$en
( i )%)5($Un%,$2 iWn%) is an eigenvector

of the Floquet matrix with eigenvaluee2 ivpT, where the time
periodT is arbitrary since the operatorsL0 andL1 are time
independent.~The symplectic Floquet matrix iseMFT, where
MF is obtained fromM (0) by changingL1 into 2L1.! Thus
Eq. ~16! is the linear combination of two complex conju
gated Floquet eigensolutions which makesen

(r ) anden
( i ) real.

For the single-site breather, all eigenvaluesvp of M (0) are
always real, implying the linear stability of the breather f
all parameter valuesL/C.0 @35#. Accordingly, we can also
choose the eigenvectors ($Un%,$Wn%) of M (0) to be real and
normalized, in which case the phase of the amplitudea de-
scribes the symmetry properties of solution~16! under time
reversal: choosinga real yields a time-symmetric solution
en(t)5en* (2t), while choosinga purely imaginary yields a
time-antisymmetric solution,en(t)52en* (2t).

For an infinite system, the spectrum of the~non-
Hermitian! matrix M (0) can generally be divided into a con
tinuous~phonon! part, corresponding to extended eigenve
tors, and a point spectrum corresponding to localiz
eigenvectors. The phonon spectrum for any localized so
tion $fn% is easily obtained from the limitunu→`, since the
condition fn→0 implies that the operatorsL0 and L1 be-
come identical and Eqs.~18!–~19! reduce into two un-
coupled equations for the linear combinationsan[Un1Wn
andbn[Un2Wn . Assumingan;e6 iqan andbn;e6 iqbn, re-
spectively, yields the dispersion relations

vp5L22C~cosqa21!, ~21!

vp52L12C~cosqb21! ~22!
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from Eqs.~18! and~19!. Thus the continuous spectrum of th
matrix M (0) consists of two branches, symmetrically locat
aroundvp50, and sinceL.0 for the single-site breathe
these two branches never overlap. Note also that two eig
vectors with eigenvalues6vp correspond to the same solu
tion to Eq. ~12! @changing the sign ofvp in Eq. ~16! is
equivalent to changingUn↔Un* , Wn↔2Wn* , a↔a* #, and
therefore it is enough to consider, e.g.,vp.0, in which case
bn5Un2Wn always vanishes exponentially asn→6`.

When L/C is not too large, the linear spectrum arou
the single-site breather also contains two pairs of nonz
isolated eigenvaluesvp , which correspond to the two inter
nal modes of the breather@13,26#. One of these modes is
spatially symmetric, ‘‘breathing,’’ mode, while the other is
spatially antisymmetric ‘‘translational’’ or ‘‘pinning’’ mode.
Numerically, it has been found that the breathing mode
ists for 0,L/C&1.7, while the pinning mode exists for
,L/C&1.1. The numerically calculated internal mode fr
quenciesvp , as a function of breather frequencyL, are
shown in Fig. 1. Note that asL/C→0, the breathing mode
frequency approaches the lower edge of the phonon b
~but always stays outside the band@26#!, while the pinning
mode frequency approaches zero~but always stays nonzero!.
This is consistent with the fact that the soliton solution of t
continuous NLS equation has no breathing mode~due to its
exact integrability!, and has a translational mode with ze
frequency due to the translational symmetry of the N
equation.

To obtain a complete set of solutions to Eq.~12! in which
an arbitrary initial perturbationen(0) can be expanded, w
must also include the zero-frequency solutions, which gen
ally can be written as a superposition of two fundamen
modes. One of these modes~the ‘‘phase mode’’@36#! is the
solution Wn5fn to the homogeneous equation~18!, L0Wn
50. The corresponding perturbationen5 ifn describes a ro-
tation of the overall phase of the breather. The second m
~the ‘‘growth mode’’ @36#! is obtained by solving the inho
mogeneous equationL1Un52fn , which has the solution
Un5]fn /]L. The corresponding solution to Eq.~12! is en

FIG. 1. Variation of internal mode frequencies vs breather f
quency for the spatially symmetric~solid line! and antisymmetric
~dashed-dotted line! internal modes of the single-site breather, r
spectively. Dashed straight line shows the lower band edge of
phonon band.
n-

ro

-

nd

r-
l

de

5]fn /]L1ifnt, and corresponds to a time-linear growth
the perturbation representing a small change in the brea
frequency.

Although the set of eigensolutions~16! together with the
two zero-frequency modes forms a basis for the space
solutions to Eq.~12! ~there are no bifurcations, which coul
result in additional ‘‘marginal modes’’@36#, with time-linear
growth at degenerate eigenvalues!, this basis is in general no
orthogonal using the ordinary scalar product, and typica
there is a considerable overlap between the solution co
sponding to the internal breathing mode and the ze
frequency modes. However, in analogy with, e.g., Refs.@32–
34#, we can define a ‘‘pseudoscalar’’ product between a
two vectors ($Un

(1)%,$Wn
(1)%) and ($Un

(2)%,$Wn
(2)%) by

(
n

~Un
(1)Wn

(2)* 1Wn
(1)Un

(2)* !. ~23!

This product is formally not a true scalar product, since
the general case the product of a vector with itself as defi
by Eq. ~23! is not necessarily positive. However, whe
($Un%,$Wn%) is a real eigenvector ofM (0) we have
(nUnWn5(1/vp)(nWnL0Wn from Eq. ~18!, and the opera-
tor L0 is positive definite for allWnÞfn @35#. With this
product, it follows from Eqs.~18! and ~19! that all eigenso-
lutions with different ~real! eigenfrequenciesvp are ‘‘or-
thogonal’’ in the sense that

~vp
(1)2vp

(2)!(
n

~Un
(1)Wn

(2)* 1Wn
(1)Un

(2)* !50, ~24!

and the only nonzero product involving the zero-frequen
modes is the cross-product between the phase mode an
growth mode@35#,

(
n

fn

]fn

]L
5

1

2

dNf

dL
.0, ~25!

where Nf is the norm@Eq. ~3!# of the breather with fre-
quencyL. We also remark that, since the product@Eq. ~23!#
multiplied by a factor i is just the symplectic produc
between the two vectors ($en

(r )(1)%,$en
( i )(1)%) and

($en
(r )(2)%,$en

( i )(2)%), the sign of the product of an eigenvect
with itself can be interpreted as the negative of the Kr
signature of the corresponding pair of Floquet eigenval
@2#.

C. Strategy for the perturbational approach

As an initial state we now consider a single-site breat
perturbed in the direction of a single eigenmode~16! ~local-
ized or extended! of the linearized equations~12!, and we
wish to describe qualitatively the long-time effects of th
perturbation using expansion~10!. In general, taking into
account terms up to orderp in this expansion yields a solu
tion to the DNLS equation which is correct toO(lp11), i.e.,
for long but finite time scales for small initial perturbation
~note that the expansion parameterl plays the same role a
the mode amplitudea!. As is well known however, this kind
of expansion in general diverges due to resonances betw
solutions to the homogeneous equation~12! and the inhomo-
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geneous terms appearing in the right-hand sides of E
~13!–~15! and the corresponding higher-order equations
resonance with a solution belonging to the continuous sp
trum results in a bounded but nonlocalized solution cor
sponding to outgoing radiation, while a resonance with
eigenfunction belonging to the discrete spectrum gives a
tially localized response which diverges linearly in tim
However, up to any finite order these divergences can
systematically removed by allowing a slow time depende
of the independent variables, which in our case are take
be the mode amplitudea and the breather frequencyL. This
procedure adds additional terms to the equations, which
be tuned so that the divergent parts of the response di
pear. In other words, these two quantities are used as co
tive variables which, together with the outgoing radiati
fields, are expected to describe the main features of
asymptotic dynamics if the initial perturbation is sufficient
small.

The second order correction is given by the inhomo
neous equation~13!, which with substitution~16! becomes
~choosingfn , Un , andWn real without loss of generality!:

L~L!•$hn%52
1

2
fn@ uau2~3Un

21Wn
2!

1~3Un
22Wn

2!Re~a2e22ivpt!

12iU nWn Im~a2e22ivpt!#. ~26!

Thus the right-hand side contains one static part and one
involving the frequencies62vp . It acts as a periodic force
with frequencies 0 and 2vp , and since all terms contain th
factor fn this force is localized at the breather region. T
response to this force will remain bounded and localized
less the corresponding homogeneous equation~12! has a so-
lution with frequency 0~or 2vp) which is nonorthogonal to
the corresponding part of the right-hand side in Eq.~26!. As
will be shown in Sec. III B, a nonzero overlap between t
static part of Eq.~26! and the zero-frequency solutions of E
~12! yields a ~time-independent! shift of the breather fre-
quency. Moreover, ifL,2uvpu,L14C, so that 2vp is in-
side the phonon band of the homogeneous equation, a r
nance will generally occur, resulting in radiation wi
frequency 2vp emitted from the breather region. Th
strength of the radiation field is determined by the~generally
nonzero! overlap between the 2vp part of Eq.~26! and the
corresponding homogeneous solution~see Sec. III B!. In a
similar way, we obtain that the right-hand side of the thir
order equation~14! contains the frequenciesvp and 3vp ,
the fourth-order equation~15! contains the frequencies 0
2vp , and 4vp , and in general thepth-order equation con
tains as its highest harmonic the frequencypvp . Accord-
ingly, we conclude that if

L,puvpu,L14C, ~27!

so that pvp belongs to the phonon band, the perturb
breather will radiate topth order. The consequences of th
radiation for the breather itself will be discussed in Secs.
and IV for the cases of localized and extended perturbat
$en%, respectively.
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III. BREATHER INTERACTING
WITH INTERNAL MODES

With the initial perturbationen(0) of the single-site
breather corresponding to a spatially localized eigenmod
the linearized equations~12!, it is clear from the discussion
in Sec. II C that higher order radiation always will be cr
ated, since for any internal mode frequencyvp there is al-
ways an integerp, such thatpvp belongs to the phonon ban
and Eq.~27! is fulfilled. Moreover, from the numerical re
sults presented in Fig. 1, we find that the spatially symme
breathing mode always radiates to second order, since
~27! always is fulfilled for p52, while the antisymmetric
pinning mode radiates to second order only whenL/C
*0.480. Thus, due to this radiation from the breather,
total norm contained in any finite region around the breat
~i.e., the total norm of breather plus internal mode! will al-
ways decrease with time. However, the main concern her
the long-time effect of the internal-mode excitation on t
breather itself, and thus we must investigate whether th
will also be some transfer of energy between the breather
its internal mode. We will first~Sec. III A! show results from
direct numerical integration of Eq.~2!; then we will give two
alternative approaches to the analytical interpretation
these results based on the higher-order equations~13!–~15!
~Sec. III B! and the conservation laws~4!–~5! ~Sec. III C!,
respectively.

A. Numerical simulations

In Fig. 2, we show a typical example on the long-tim
evolution of a breather when the initial perturbation is tak
in the direction of its internal breathing mode. As can
seen from Fig. 2~a!, the amplitude of the breathing mod
decays slowly with time as a consequence of the losses
to generation of second-order radiation, and a careful st
of its envelopeua(t)u indicates that it decays as

ua~ t !u;
ua~0!u

A11gua~0!u2t
, ~28!

whereg.0 is a constant. This is consistent with a simil
result obtained for the continuum NLS equation with gen
alized~noncubic! nonlinearity@33#; the analytical motivation
for this result~which is analogous to that of the continuu
model given in Ref.@33#! is given in the following subsec
tions.

However, the main result of this section is illustrated
Figs. 2~b! and 2~c!. Figure 2~b! is obtained by calculating the
time average of the central-site intensity as

^ucn0
u2& t5tK

5
1

K (
k51

K

ucn0
~ tk!u2, ~29!

where tk is a set of closely spaced time instants. It is cle
that the interaction between the breather and its inte
mode asymptotically leads to anincreaseof the average peak
intensity, i.e., tobreather growth. The same phenomenon
also illustrated in Fig. 2~c!, where we plot the difference
between the instantaneous breather frequency calculate
time t, L(t), and the frequency of the unperturbed breath
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L0. From this figure, we can also conclude that there are
different mechanisms causing the shift of breather frequen
First, there is an initial~almost instantaneous!, rather large,
frequency shift, which can be interpreted as an adaption
the initially perturbed breather to the breather which

FIG. 2. Time evolution of a breather with an initial perturbatio
in the direction of the breathing mode. Parameters areL50.5, vp

'0.47, andC51. ~a! shows the time evolution of the central-si
intensity ucn0

u2, ~b! shows its time averagêucn0
u2& t calculated us-

ing Eq. ~29!, and~c! shows the instantaneous shift of breather f
quencyL(t)2L0. The solid line in the main figure in~c! is a fit
using Eq.~40! with a(0)50.082, C150.9078,C250.069, andg
50.067.
o
y.

of

‘‘closest’’ to the initial condition. As shown below in Sec
III B, this time-independent frequency shift, which is o
served to be always positive for the breathing mode, i
consequence of the overlap between the static part of
right-hand side of the second-order equation~26! and the
zero-frequency modes. Second, there is the slow, continu
increase of the breather frequency which corresponds to
slow increase of̂ ucn0

u2& t in Fig. 2~b!, indicating a continu-
ous transfer of norm from the internal mode to the breath
It is described by the static part of the right-hand side of
fourth-order equation~15! ~see Sec. III B!.

When the initial perturbation of the breather is taken
the direction of its internal pinning mode we observe, just
for the breathing mode, that the breather–internal-mode
teraction asymptoticallyalways leads to breather growth. An
example is shown in Fig. 3, where the parameter values h
been chosen so that the lowest harmonic that enters the
non band is 3vp (L/C50.45,0.480). We observe two
qualitative differences compared to the case with breath
mode excitation. First, since in this case the first phon
resonance occurs only in the third-order equation~14!, the
decay of the internal mode amplitude will be slower, and
good fit is obtained byua(t)u;ua(0)u@11gua(0)u4t#21/4.

-

FIG. 3. Time evolution of a breather with an initial perturbatio
in the direction of the pinning mode. Parameters areL50.45, vp

'0.197, andC51. ~a! shows the time evolution ofucn021u2, where
n0 is the central site of the breather,~b! ~main figure! shows the
instantaneous shift of the breather frequencyL(t)2L0, and the
inset in ~b! shows the time averagêucn0

u2& t .
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This agrees with the general result whenpvp is the lowest
harmonic that enters the phonon band obtained for the c
tinuum generalized NLS equation in Ref.@33#; the derivation
of the corresponding result for the discrete case@see Eq.
~47!# is given in Sec. III C. As a consequence of the slow
decay of the internal mode amplitude, the breather gro
will also be slower whenp.2, as can be seen from Fig. 3~b!
by comparing the time-scales with those of Fig. 2. Seco
the initial shift of the breather frequency for a pinning mo
excitation is always much smaller than for the breath
mode excitation~also when 2vp is in the phonon band!, and
whenL/C*0.55 is also observed to be negative. The exp
tion for this is given in Sec. III B. However, it is important t
stress that in the cases where the initial frequency shif
negative, we also find that the continuous breather gro
always will give an asymptotic frequency shift which is po
tive.

B. Analysis of higher-order equations

Here, we will analyze the higher-order equations~13!–
~15! by making use of the strategy of systematically remo
ing the appearing divergent parts as outlined in Sec. II C~in
analogy with the treatment of the continuous NLS-type eq
tions in, e.g., Refs.@32–34#!. First, we show how the domi
nating contribution to the time-independent frequency s
observed in the numerical simulations above can be ca
lated from the static part of the right-hand side of the seco
order equation~13!. This frequency shift can be explicitly
taken into account by replacingL in Eq. ~10! with L0
1l2L2, whereL0 is the unperturbed breather frequency a
L2 the second-order shift to be determined. This implies t
the additional termL2fn will be added to the right-hand sid
of Eq. ~26!. Writing the response to the static part of~26! as
hn

(s)5uau2(un
(s)1 iwn

(s)) with real un
(s) andwn

(s) then yields

M (0)S $un
(s)%

$wn
(s)%

D 5S $0%

H 2fnS L2

uau2
2

1

2
~3Un

21Wn
2!D J D ,

~30!

with M (0) as defined by Eq.~20!. If the expansion of the
right-hand side of Eq.~30! in the complete set of vector
consisting of the eigenvectors ofM (0) ~including the phase
mode! and the growth mode contains some component
either of the two zero-frequency modes, the responsehn

(s)

will not remain bounded but diverge linearly with time
Thus, in order to remove this divergency, the frequency s
L2 must be chosen so that both these components are
tically zero. The component on the growth mode is trivia
zero, while the component on the phase mode is obtaine
applying the pseudoscalar product~23! with the vector cor-
responding to the growth mode and using Eq.~25!. Demand-
ing this component to be zero yields

L25
uau2

dNf

dL

(
n

fn

]fn

]L
~3Un

21Wn
2!. ~31!

This is typically positive for the breathing mode, since t
dominating contribution to the sum in Eq.~31! comes from
n-

r
th

d,

g

na-

is
th

-

-

ft
u-
-

t

n

ft
n-

by

the central siten0, and]fn0
/]L is always positive. For the

spatially antisymmetric pinning mode, there is no contrib
tion to this sum from the central site, sinceUn0

andWn0
are

zero. The change from a positive to a negative freque
shift when increasingL in this case is related to a qualitativ
change of the nature of the growth mode]fn /]L: for L
*0.55 we find that]fn /]L,0 for all nÞn0, so that all
terms in the sum in Eq.~31! are negative, while]fn /]L
also becomes positive for sites in the neighborhood ofn0 for
smallerL.

For the rest of the analysis in this subsection, we assu
for calculational simplicity that the internal mode frequen
is such that 2vp is inside the phonon band~and thus it is not
applicable for the pinning mode excitation whenL/C
&0.480). Then the nonstatic part of the right-hand side
the second order equation~26! will generally give rise to a
nonlocalized response, which can be written in the fo

hn
(rad)5 1

2 a2(un
(2)1wn

(2))e22ivpt1 1
2 a* 2(un

(2)* 2wn
(2)* )e2ivpt.

This response corresponds to the radiation field going
from the breather region, and, since the right-hand side
Eq. ~26! is spatially localized and symmetric, this fiel
should asymptotically correspond to two identical line
waves propagating to the left~right! for n→2` (1`).
Thus the boundary conditions can be written as

un
(2) ,wn

(2)→r 2e6 iq2n, n→6`, ~32!

with q25arccos„12(2vp2L)/2C… according to Eq.~21!.
Defining for generalv the matrixM (v) @cf. Eq. ~20!# as

M (v)[S 2v L0

L1 2v
D , ~33!

the functionsun
(2) and wn

(2) are seen from Eq.~26! to be
determined by

M (2vp)S $un
(2)%

$wn
(2)%

D 5
fn

2 S $2UnWn%

$3Un
22Wn

2%
D . ~34!

Since for generalv every eigenvector ofM (v) with eigen-
value m is also an eigenvector ofM (0) with eigenvaluem
1v, the right-hand side can be expanded on the basis
eigenvectors ofM (0) ~including the zero-frequency modes!.
The strength of the radiation field is then given by t
expansion coefficient for the~continuous spectrum! eigen-
vector ofM (0) with eigenvalue 2vp , since this correspond
to the eigenvaluem50 of M (2vp), and thus a spatially
nonbounded response in Eq.~34!. Using the orthogonality
relation ~24!, this coefficient is simply the ‘‘overlap’’ be-
tween the right-hand side of Eq.~34! and the eigenvector o
M (0) with eigenvalue 2vp calculated with the pseudoscala
product~23!, which is generally nonzero.

Next, we show how the dominating contribution to th
decay of the internal mode amplitude as given by Eq.~28!
is obtained from the condition thatjn in the third-order equa-
tion ~14! should remain bounded. To this end, we assum
slow time dependence of the internal mode amplitude of
form a5a(l2t), and consider the response to the terms w
frequencyvp on the right-hand side of Eq.~14! ‘‘corrected’’
by the additional terms (2 i ȧ1L2a)(Un1Wn)e2 ivpt
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1(2iȧ*1L2a* )(Un2Wn)e
ivpt appearing as a consequence

including the time dependence ofa and the second-orde
frequency shiftL2 from Eq. ~31! in the perturbation expan
n

be

m

he
e
ua
f sion ~10!. Writing the response to this part asjn
(vp)

5 1
2 uau2a(un

(3) 1 wn
(3))e2 ivpt 1 1

2 uau2a* (un
(3)* 2 wn

(3)* )eivpt

yields
M (vp)S $un
(3)%

$wn
(3)%

D 5S H i
ȧ

uau2a
Un1fn~Unwn

(2)2Wnun
(2)12Wnun

(s)!1
1

4
~Un

2Wn13Wn
3!2

L2

uau2
WnJ

H i
ȧ

uau2a
Wn1fn~3Unun

(2)1Wnwn
(2)16Unun

(s)!1
1

4
~3Un

31UnWn
2!2

L2

uau2
UnJ D . ~35!
er

into

m

th
for

to

on
-

ed

-

A bounded response forjn
(vp) exists only if the vector on the

right-hand side of Eq.~35! has no component in the directio
of the internal mode eigenvector ($Un%,$Wn%), since this is
the eigenvector corresponding to the eigenvalue zero
M (vp). Using the orthogonality relation~24!, this component
is obtained by application of the product~23! with the vector
($Un%,$Wn%), and the condition that this component must
zero determines the time evolution ofa. Considering only
the absolute valueuau2, the resulting equation has the for
(d/dt)(uau2)1guau450, which has the desired solution~28!.
The constantg is given by

g5

(
n

fn@2UnWn Im~wn
(2)!1~3Un

22Wn
2!Im~un

(2)!#

(
n

UnWn

5
8Cvpur 2u2 sinq2

(
n

WnL0Wn

.0, ~36!

where the second equality is obtained using Eqs.~18!, ~32!,
and~34!, and the positivity ofg follows from the fact that, as
mentioned in Sec. II B, the operatorL0 is positive definite
for all WnÞfn @35#.

Finally, we show how the continuous increase of t
breather frequency appears from the divergent respons
the static part of the right-hand side of the fourth-order eq
tion ~15!. In its unmodified form, this part is given by

Rn
(4s)[2

1

2
fnuau4$6Un Re~un

(3)!12Wn Re~wn
(3)!

12iU n Im~wn
(3)!22iWn Im~un

(3)!16~un
(s)!2

13uun
(2)u21uwn

(2)u212i Im~un
(2)* wn

(2)!%

2
1

4
uau4$2~3Un

21Wn
2!un

(s)

1~3Un
22Wn

2!Re~un
(2)!12UnWn Re~wn

(2)!

22iU nWn Im~un
(2)!1 i ~Un

223Wn
2!Im~wn

(2)!%.

~37!
of

to
-

Now, it is clear from Eqs.~31! and~28! that the time depen-
dence ofa will induce a time dependence of the second-ord
frequency shiftL2 of the form L2(l2t), so that we can
express the total breather frequency up to orderl4 asL(t)
5L01l2L2(l2t)1l4L4, where a fourth-order correction
L4 has also been included. Then we must also take
account the time dependence of the breather shapefn by
writing fn„L(t)…. As a consequence, the ter
2 i (]fn /]L)L̇21L4fn will be added to expression~37!
for Rn

(4s) in the right-hand side of Eq.~15!, and writing the
response to this total force asun

(s)5uau4(un
(4s)1 iwn

(4s)) with
real un

(4s) andwn
(4s) yields

M (0)S $un
(4s)%

$wn
(4s)%

D 5
1

uau4 S H ]fn

]L
L̇22Im~Rn

(4s)!J
$2L4fn2Re~Rn

(4s)!%
D . ~38!

The responseun
(s) will be bounded in time only if the right-

hand side of Eq.~38! has no component either on the grow
mode or on the phase mode, which gives two conditions
the determination ofL̇2 and L4. Using Eqs.~23!–~25!, by
demanding the expansion coefficient for the growth mode
be zero, we obtain

L̇25
uau4

2
dNf

dL

(
n

$4fn
2@Wn Im~un

(3)!2Un Im~wn
(3)!

1Im~un
(2)wn

(2)* !#1fn@2UnWn Im~un
(2)!

1~3Wn
22Un

2!Im~wn
(2)!#%. ~39!

~Similarly, L4 is obtained by demanding the component
the phase mode to be zero.! Thus the dominating contribu
tion to the frequency growth should be of orderL̇2;uau4, so
that with the approximate time dependence~28! of the
internal-mode amplitude we obtain, qualitatively,

L~ t !2L0;ua~0!u2S C12C2

1

11gua~0!u2t
D , ~40!

which is in good agreement with the numerically observ
time dependence of the frequency shift shown in Fig. 2~c!.
However, the positivity ofL̇2 is not easily seen from expres
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sion ~39!, and therefore in Sec. III C we will derive an alte
native expression from which the positivity follows immed
ately, using the conservation laws for the norm a
Hamiltonian, respectively.

C. Approach using conservation laws

We first consider the conservation law~4! for the total
norm ~3! contained in any large but finite region around t
breather. Averaging over a time interval@ t,t12p/vp# and
using Eqs.~10! and ~16!, we can write the time-average
norm to second order inuau ~putting l51) as

^N & t~ t !.(
n

Ffn
2
„L~ t !…1

ua~ t !u2

2
~Un

21Wn
2!G . ~41!

@Note that there will be no contribution at order 2 from t
static second-order correctionun

(s) , since the renormalization
of the breather frequencyL according to Eq.~31! yields
(nfnun

(s)50.# In the case when 2vp belongs to the phonon
band, we obtain the following balance equation, which
correct up to orderuau4:

d^N & t

dt
5

dNf

dL
L̇1

1

2 (
n

~Un
21Wn

2!
duau2

dt

5JN ~2`!2JN ~1`!524Cuau4ur 2u2 sinq2 ,

~42!

where we have used Eqs.~4!, ~6!, and ~32!, and q2 is as
defined below Eq.~32!.

Similarly, we can use conservation law~5! for Hamil-
tonian ~1! together with the general expression for t
Hamiltonian flux density~7! for a small-amplitude plane
wavecn5Aei (qn2v(q)t),

JH52uAu2Cv~q!sinq, ~43!

to write the balance equation for the total time-averag
Hamiltonian in the same region for the case of second-o
radiation,

d^H& t

dt
5

dHf

dL
L̇1

]^H& t

]uau2

duau2

dt

5JH~2`!2JH~1`!

524Cuau4ur 2u2~2vp2L!sinq2 , ~44!

which is also correct to orderuau4. The lowest order contri-
bution to the derivative]^H& t /]uau2 can be obtained using
the first equality in the equation of motion~2! and its com-
plex conjugate as follows:

]^H& t

]uau2
5

1

a*

]^H& t

]a
5

1

a*
(

n
K ]H

]cn

]cn

]a
1

]H
]cn*

]cn*

]a L
t

52
1

2
L(

n
~Un

21Wn
2!1vp(

n
UnWn1O~ uau2!,

~45!
d

s

d
er

which is always negative for an internal mode excitati
sinceuvpu,L. Thus we can combine the two balance equ
tions ~42! and ~44! and, using Eqs.~9! and ~45!, obtain ex-
pression~28! for ua(t)u with g as in Eq.~36!, together with
the following expression for the frequency growth rate fro
which its positivity is immediately seen:

L̇5
4Cuau4ur 2u2 sinq2

dNf

dL

S (
n

~Un
21Wn

2!

(
n

UnWn

21D .0.

~46!

This approach also has the advantage that it is easily g
eralized to the case where the lowest harmonic that enters
phonon band ispvp with p.2, i.e., for the pinning mode
excitation whenL/C&0.480. Then we can write the bound
ary conditions at the infinities to lowest order ina as cn
→apr pei [ 6qpn2(pvp2L)t] , n→6`, where r p;1 and qp
5arccos„(L2pvp)/2C11… according to Eq.~21!. Conse-
quently, we can proceed exactly as above, writing down
balance equations for the norm and Hamiltonian to or
uau2p just by modifying the right-hand sides of Eqs.~42! and
~44!, respectively, by replacinguau4 with uau2p, r 2 with r p ,
q2 with qp , and 2vp with pvp . Combining the balance
equations yields the general expressions for the time de
dence of the internal mode amplitude,

ua~ t !u5
ua~0!u

@11~p21!gpua~0!u2p22t#1/(2p22)
,

gp5
4pCur pu2 sinqp

(
n

UnWn

.0, ~47!

which is the analog to the expression obtained with sim
arguments in Ref.@33# for the continuum NLS models. Mos
importantly, we obtain a general expression for the breat
frequency growth rate which is positive for allp:

L̇5
4Cuau2pur pu2 sinqp

dNf

dL

S p(
n

~Un
21Wn

2!

2(
n

UnWn

21D .0.

~48!

Thus, integrating Eq.~48! using the time dependence from
equation~47! of the internal-mode amplitude, we obtain th
the dominating contribution to the frequency growth gen
ally can be written qualitatively as

L~ t !2L0;ua~0!u2

3S C12C2

1

11~p21!gpua~0!u2p22t
D 1/(p21)

.

~49!

Let us finally point out that the approach used in th
section provides a simple physical interpretation of why
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interaction between the breather and its internal m
should, in addition to generating radiation, also lead
breather growth. Since expression~43! for the Hamiltonian
flux density of a small-amplitude plane wave is positi
when v(q) and q have the same sign, the Hamiltonian e
ergy for a plane wave always propagates in the same d
tion as the wave itself. Thus the second-~or higher-! order
radiation emitted from the breather region will always ca
away a positive amount of the Hamiltonian energy, o
equivalently, negative Hamiltonian energy will flow into th
breather region. Moreover, from Eq.~45! it is clear that the
contribution to the Hamiltonian from the internal mode a
ways is negative and a monotonouslydecreasingfunction of
its amplitude, and thus the decay of the internal mode wo
cause anincreaseof the Hamiltonian in the breather region
Consequently, since the Hamiltonian of the pure breather
monotonously decreasing function of the breather frequen
the breather should grow so that the total Hamiltonian of
breather plus the internal mode decreases. A similar me
nism was recently found to cause soliton growth in the pa
metrically driven continuum NLS equation in the regime
oscillatory instability@34#, and this type of argument has als
been used to explain the ‘‘quasicollapse’’ of a broad exc
tion to a narrow localized state in the two-dimension
DNLS equation@37#.

IV. BREATHER INTERACTING
WITH STANDING-WAVE PHONONS

We choose, as in Sec. III, the initial perturbationen(0) to
be an eigensolution of the linearized equations~12!, but now
we consider the case of a spatially extended perturbat
Without loss of generality, choosing a solution of the form
Eq. ~16! with positive frequencyvp yields the asymptotic
behavior

Un ,Wn→ cos~qn6d!, n→6`, ~50!

where the wave vectorq (0<q<p) is determined by the
dispersion relation~21!, andd is the phase shift across th
breather. Thus the excitation of an extended eigenmode
responds to an interaction between the breather and a
propagating, standing-wave phonon with small amplitudea.
As mentioned in Sec. I, these standing-wave phonons
generally unstable, but since the instabilities become ex
nentially weak in the small-amplitude limit they are expect
to have very little effect on the breather for the perturbat
sizes and time scales considered in this section. We
return to the effects on the breather of these instabilities
Sec. V, where larger perturbations are considered.

In contrast to the case of excitation of a localized inter
mode discussed in Sec. III, where higher-order radiation
ways was emitted from the breather region, condition~27!
yields that for the standing-wave perturbation the breat
will radiate to higher order only ifL<vp,L/212C, so
that bothvp and 2vp are inside the phonon band. In terms
the phonon wave vectorq, this means that there is a critica
valueqc ,

qc5arccosS L

4CD , ~51!
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such that for 0<q,qc second-order radiation will be emit
ted from the breather region, while forqc,q<p (L/2
12C,vp<L14C) all multiples of vp are outside the
phonon band, and no higher-order radiation is emitted.
will be shown below, these two regions yield qualitative
different scenarios for the long-time evolution of the pe
turbed breather. We also note that forL.4C we haveqc
50, so that for the highly localized, high-frequency brea
ers no phonons can generate higher-order radiation~note
also that there are no internal modes in this regime!. Further-
more, we always haveqc,p/2, so that the regime of higher
order radiation generation is a subset of the regime 0,q
,p/2 where modulational instability fortraveling plane
waves occurs@9#.

Let us first discuss the caseq,qc . A typical example of
the long-time evolution of a breather interacting with
small-amplitude standing-wave phonon withq,qc is illus-
trated by Fig. 4. As seen from Fig. 4~a!, the amplitude of the
oscillations remains essentially constant in time, but a clo
inspection reveals that the average value ofucn0

u2 asymptoti-
cally increaseswith an apparently constant rate@see the inset
in Fig. 4~b!#. Similarly, Fig. 4~b! also shows that the tota

FIG. 4. Time evolution of a breather with an initial perturbatio
in the direction of an extended eigenmode~spatially symmetric!
with q,qc . Parameters areL51.0, vp'2.31 (q'1.22), a
'0.0383, andC51. ~a! shows the time evolution of the central-si
intensityucn0

u2, ~b! ~main figure! shows the total norm contained i
a region of 120 sites around the breather, and the inset in~b! shows
the time averagêucn0

u2& t .
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norm contained in any finite region around the breather
ymptotically increases linearly with time. We find that the
results are generic for all cases when the phonon wave ve
q,qc ~the spatial symmetry of the phonon is not importa
for the asymptotic behavior!, and thus we conclude that i
this regime, the breather can ‘‘pump’’ energy from the ph
non ~which is infinite for an infinite system!, and thereby
grow.

In the same spirit as for the internal mode excitation
Sec. III C, we can give a simple argument based on the c
servation laws to motivate why the generation of seco
order radiation should lead to breather growth. To this e
we assume that the initial standing-wave phonon is infinit
extended, and that far away from the breather a station
regime will be reached corresponding to the followi
boundary conditions:

cn→@~ae7 iqn1re6 iqn!e2 ivpt1r 2ei (6q2n22vpt)#eiLt,

n→6`. ~52!

Thus we have taken into account the second-order radia
with frequency 2vp generated at the breather region, b
have neglected possible higher-order radiation; moreo
the resonance at the original phonon frequencyvp in the
third-order equation~14! has been taken into account by a
lowing the incoming and outgoing complex amplitudesa and
r to be different. We can then, in analogy with Eqs.~42! and
~44!, write the balance equations for the total norm a
Hamiltonian contained in a region around the breather, a
aged over a time interval@ t,t12p/vp# as

d^N & t

dt
5

dNf

dL
L̇5^JN ~2`!& t2^JN ~1`!& t

54C@~ uau22ur u2!sinq2ur 2u2 sinq2#

~53!

and

d^H& t

dt
5

dHf

dL
L̇5^JH~2`!& t2^JH~1`!& t

54C@~ uau22ur u2u!~vp2L!sinq

2ur 2u2~2vp2L!sinq2#, ~54!

respectively. Here, we have used the facts that the ti
average of the norm current density~6! and the Hamiltonian
flux density ~7! are additive quantities for small-amplitud
plane waves, and that in the stationary regime the mode
plitudesa, r, and r 2 are time independent. Combining Eq
~53! and ~54! and using Eq.~9!, we obtain that the breathe
frequency grows with a constant rate given by

L̇5
4Cur 2u2 sinq2

dNf

dL

.0. ~55!

The physical interpretation of this result is, similarly as f
the case of internal mode excitation, that the generation
higher-order radiation results in a net flow of negati
s-

tor
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Hamiltonian energy into the breather region, which is a
sorbed by the breather by increasing its frequency and m
mum amplitude. This process is similar to the one obser
in Ref. @38# for two-channel phonon scattering on breathe
in a Klein-Gordon model with a Morse potential; howeve
in the latter case the second outgoing wave resulted fro
resonance in the linearized equations, and were therefor
the same order of magnitude as the incoming wave. Mo
over, the outcome in this case was breather decay, since
energy of a Klein-Gordon breather is an increasing funct
of its amplitude.

Considering now the regimeq.qc where all multiples of
vp are outside the phonon band, the most important con
sion from our extensive numerical investigations is that
never observe breather growth. Instead, we sometimes~but
not always! observe a very slow decrease of^ucn0

u2& t , and

an increase of the fluctuations around this mean value. T
behavior is illustrated by Figs. 5~a! and 5~b!. A possible
interpretation of these results is that, since the higher h
monics which are created by the breather-phonon interac
cannot propagate, they stay trapped around the brea
Thus this could lead to a transfer of energy from the ‘‘pur
breather, which acquires more and more internal frequen
and becomes a ‘‘chaotic breather’’@21#. Another possible
interpretation is that the increase of the oscillation amplitu
is connected with the oscillatory instabilities of the standi
waves; as we will show in Sec. V, these instabilities prov
a mechanism for breather decay. However, in some ca
illustrated by Figs. 5~c! and 5~d!, the oscillation amplitude as
well as its average value apparently approaches a con
limit value. At present we have no explanation for this b
havior ~as will be discussed in Sec. V, there exist exa
‘‘phonobreather’’ solutions which could be candidates f
such a final state, but they are unstable!; it is possible that the
time ranges that we were able to study with sufficient n
merical accuracy in these cases simply were too shor
observe the scenario described by Figs. 5~a! and 5~b!.

To conclude this section, we repeat our main result t
breather growth is observed if and only ifq,qc , whereqc is
given by Eq.~51!. The fact thatqc50 for L.4C thus im-
plies the existence of an upper limit beyond which t
breather cannot grow with the type of perturbations cons
ered here. We would also like to relate our results to rec
numerical simulations of breathers interacting withpropa-
gating phonons in Klein-Gordon@39# and FPU@21# lattices.
For the Klein-Gordon lattice with a~soft! Morse on-site po-
tential, phonons with a small wave vectorq were observed to
yield breather growth, while phonons with largeq caused
breather decay. For a FPU lattice with hard anharmonic
the opposite situation was observed, i.e., small-q phonons
caused breather decay and large-q phonons breather growth
The fact that the situation for the hard FPU lattice was o
posite to that of the soft Klein-Gordon lattice could be e
pected, since in the former case the modulational instab
occurs for largeq, whereas soft Klein-Gordon and DNLS
lattices withC.0 are modulationally unstable for smallq.
However, we stress that the relation between plane-w
modulational instability and breather growth is nontrivia
and at least for the case considered in this paper the cri
valueqc for breather growth from interaction with standing
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FIG. 5. Time evolution of a breather with initial perturbations in the direction of extended eigenmodes withq.qc . Parameters areL
51.0 andC51, and~a!,~b! vp'4.93 (q'2.88),a'0.0644,~c!,~d! vp'2.72 (q'1.43),a'0.0383.~a! and~c! show the time evolution of
the central-site intensityucn0

u2, while ~b! and ~d! show its time-average.
on
no
t
c
e

ze
re

e
on
s

ly

be
r t

d

g of
pect
in

y
lf,

tion

n-

al

ites
g
ave
wave phonons differs from the critical valueq5p/2 for
modulational instability of traveling waves.

V. BREATHER GROWTH AND DESTRUCTION
FROM STANDING-WAVE INSTABILITIES

In this section, with the aim of describing the interacti
between a breather and a standing-wave phonon with a
negligible amplitude, we will take a slightly different poin
of view than in Sec. IV. Instead of choosing an exa
breather solution as the initial conditions and adding a p
turbation corresponding to an eigenmode of the lineari
equations, here we will consider initial conditions which a
exactphonobreather@2# ~or nanopteron! solutions. By defi-
nition, a phonobreather consists of a spatially localiz
breather on top of a spatially extended tail which is a n
linear, standing-wave phonon.~There are also solution
where the tail is a propagating wave@36#, but we will not
discuss them further here.! Phonobreathers exist generical
for nonlinear lattice-equations~see, e.g., Refs.@2,6#!, but
their existence normally requires an integer relationship
tween the breather and phonon frequencies. However, fo
DNLS equation phonobreathers exist forany ~rational or ir-
rational! relation between the two frequencies@11#, as a con-
sequence of the additional invariance of the equation un
global phase transformations.
n-

t
r-
d

d
-

-
he

er

Since the phonobreathers are exact solutions consistin
a breather part and a standing-wave part, one could ex
them to be attractors for the initial conditions considered
Sec. IV. However, as was shown recently@27#, generically
for soft Klein-Gordon and DNLS models withC.0, all
phonobreathers with phonon wave vectorqÞp will be lin-
early unstableif, for fixed phonon amplitudea, the linear
coupling C is larger than some threshold valueCcr(a,q)
~i.e., away from the anticontinuous limit!. ~For lattices with
hard potentials and DNLS equations withC,0, the stable
phonobreather hasq50.! These instabilities are caused b
an oscillatory instability of the standing-wave phonon itse
which can be understood by considering the construc
of a nonlinear standing wave with wave vectorq close top
at the anticontinuous limitC50 by introducing a periodic
array of discommensurations or ‘‘defects’’ in the no
linear phonon with wave vectorp and amplitudea, cn

5a(21)ne2 i (4C2uau2)t, which is linearly stable for alla and
C.0 @9#. In the anticontinuous limitC50, whenp/2,q
,p, each defect consists of one extra site withcn50 added
to the p phonon, which consequently suffers an addition
phase shift ofp across each defect. For 0,q,p/2, each
defect consists of several consecutive zero-amplitude s
with associated phase shifts~a general method for generatin
the anticontinuous coding sequence for standing-w



o

c
o

a
r

f

rs
t

.
i

rg
s
he

ac

-

w

i
se
te
ill
g-
d

w
o

g
es

-
d
et

n
v

lie
in
v
ti

ti
ti
o
r

n

n

-
tric

as

-
xtra
n,

-
w-

as

y
ve

n-
ted

ric
t
p is
ds

5876 PRE 61MAGNUS JOHANSSON AND SERGE AUBRY
phonons from a circle map was described in Ref.@27#!; in
this case it is also useful to consider the periodic repetition
sites withcn56a as defects of the zero-amplitude state.

The limit case of one isolated zero-amplitude defe
which is a discrete counterpart of the dark-soliton solution
the continuum NLS equation, was investigated in Ref.@40#.
The linear stability analysis of this mode showed that,
though it is stable close to the anticontinuous limit, it suffe
a bifurcation forC/uau25Cc'0.0765, where two pairs o
eigenvalues of the eigenvalue problem~20! go out in the
complex plane. The resulting oscillatory instability occu
due to a resonance between a mode localized around
defect~the defect pinning mode! and linear radiation modes
It was shown that, for finite systems, the mode recovers
stability above some upper critical value ofC/uau2 ~since the
wavelength of the resonating linear modes becomes la
than the system size!; however, this critical value increase
with system size, so that in the limit of an infinite system t
instability persists for allC/uau2.Cc , but with a growth-rate
that decreases in an exponential-like fashion when appro
ing the continuum limitC/uau2→`. This instability was
shown to result in the defect becoming mobile~in NLS
terms, the stationary ‘‘black’’ soliton with zero minimum
intensity transforms into a moving ‘‘gray’’ soliton with non
zero minimum intensity! and radiation being emitted. In
terms of the phase dynamics, this describes a moving, slo
spreading phase kink.

The instability scenario for the standing-wave phonons
basically the same as for the isolated defect, with the es
tial difference that the localized pinning modes associa
with the individual, periodically repeated defects now w
form a continuous ‘‘defect band.’’ In general, the Krein si
nature@2# of this defect band is opposite to that of the ban
associated with the nonzero amplitude sites@27# ~for 0,q
,p/2 there are generally several defect bands, but they
have the same Krein signature!, and as a consequence res
nances between the bands will occur if the linear couplinC
is large enough, giving rise to similar oscillatory instabiliti
as described above~details were given in Ref.@27#!. We
remark that earlier analysis@41# of standing waves in non
linear lattices, based on a quasicontinuum approximation,
not reveal these instabilities since their origin is the discr
nature of the lattice.

Let us now return to the main objective of this sectio
namely, to study the effect of the oscillatory standing-wa
instabilities on the phonobreathers. We find that the fami
of phonobreathers which are stable close to the anticont
ous limit, and whose tails approach harmonic standing wa
in the small-amplitude limit, can be constructed from an
continuous standing-wave solutions atC50, placing the
breather at a zero-amplitude site of the phonon and adjus
it so that the resulting solution is either symmetric or an
symmetric around the breather site. Denoting the antic
tinuous breather amplitude byb ~the phase of the breathe
site is unimportant whenubuÞuau @11#!, this yields the fol-
lowing possibilities.

~i! For q.p/2 the antisymmetric anticontinuous solutio
~hereq52p/3) is

$cn~0!%5$ . . . ,2a,a,0,2a,a,0,2a,a,b,

2a,a,0,2a,a,0, . . .%, ~56!
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with the asymptotic behaviorcn(0);a sin(qn),n→6` in
the continuum limitC/uau2→`. ~Note that this solution is
antisymmetric only atC50.!

~ii ! From Eq.~56! we can construct a symmetric solutio
for q.p/2 by introducing an additional phase shift ofp at
one side of the breather site, giving, forq52p/3,

$cn~0!%5$ . . . ,2a,a,0,2a,a,0,2a,a,b,a,

2a,0,a,2a,0, . . .%, ~57!

with the asymptotic behaviorcn(0);a cos(qn6p/2),n→
6` in the continuum limit.

~iii ! For q5Mp/N,p/2, N even, the number of con
secutive zero-amplitude sites is odd and the antisymme
anticontinuous solution is for, e.g.,q5p/4,

$cn~0!%5$ . . . ,0,0,0,a,0,0,0,2a,0,0,0,a,0,b,0,

2a,0,0,0,a,0,0,0,2a, . . . % ~58!

behaving ascn(0);a cos(qn),n→6` in the continuum
limit.

~iv! From Eq. ~58!, the symmetric solution forq
5Mp/N,p/2, N even, is constructed by a phase shift
above, giving, forq5p/4,

$cn~0!%5$ . . . ,0,0,0,a,0,0,0,2a,0,0,0,a,0,b,0,

a,0,0,0,2a,0,0,0,a, . . . % ~59!

with the asymptotic behaviorcn(0);2a sin(qn6p/2),n→
6` in the continuum limit.

~v! For q5Mp/N,p/2, N odd, the number of consecu
tive zero-amplitude sites is even, and we must add an e
site to obtain the antisymmetric anticontinuous solutio
which for, e.g.,q5p/3 becomes

$cn~0!%5$ . . . ,0,0,a,0,0,2a,0,0,a,0,b,0,

2a,0,0,a,0,0,2a,0,0,a, . . . %, ~60!

behaving ascn(0);a cos@q(n11/2)6q/2#,n→6`, in the
continuum limit. ~A solution with similar properties is ob
tained by instead removing one zero-amplitude site; ho
ever, its symmetric counterpart is always unstable.!

~vi! The symmetric counterpart of Eq.~60! for q
5Mp/N,p/2, N odd, is constructed by a phase shift
above, giving, forq5p/3,

$cn~0!%5$ . . . ,0,0,a,0,0,2a,0,0,a,0,b,0,a,0,0,

2a,0,0,a,0,0,2a, . . . % ~61!

with the asymptotic behaviorcn(0);2a sin„q(n11/2…
6(q1p)/2),n→6` in the continuum limit.

A typical example on the time-evolution for an initiall
very weakly perturbed phonobreather with a phonon wa
vector q.p/2 and a phonon amplitude small but no
negligible compared to the breather amplitude, is illustra
in Fig. 6. @The example in the figure belongs to type~i!, but
similar dynamics is also observed for spatially symmet
states of type~ii !.# We can clearly distinguish two differen
steps leading to the final breather destruction. The first ste
the linear oscillatory instability described above, which lea



he
a
t

n
lin
er

il
ng
at

se
ce
t
e
nd
ct

tio

pli-

ns
the
a

all
t that

that
es

yed
lue,
any
.
-

tude
in-
an-
te,

fr

o

fre-

PRE 61 5877GROWTH AND DECAY OF DISCRETE NONLINEAR . . .
to the generation of new internal frequencies of the breat
and to the movement of the defect sites in a similar way
for the case of an isolated defect. In the second step,
moving defects start interacting, and a close inspection
Fig. 6~a! shows that neighboring defects tend to merge a
create regions of accumulated phase fluctuations trave
around in the lattice. These will interact with the breath
and apparently cause its decay. When the breather has
cayed sufficiently to have an excitable pinning mode, it w
start to move in the lattice but with a rapidly decreasi
amplitude, and it will finally be destroyed. We have
present no complete understanding of the mechanism
which the interaction of the breather with the moving ‘‘pha
kinks’’ causes its decay, but we remark that a similar s
nario was observed when adding an external, parame
white noise term@42# to the DNLS equation. In that case, th
white-noise approximation allowed a qualitative understa
ing of the breather decay as a consequence of phase flu
tions by using a collective coordinate approach.

However, to observe this scenario for breather destruc

FIG. 6. Time evolution of the phonobreather@Eq. ~56!# with q
52p/3 for a system of 120 sites~periodic boundary conditions!,
perturbed only by the numerical truncation errors. The breather
quency isLb51.55, the phonon frequencyLph522.95 ~phonon
amplitudea'0.2), andC51. ~a! showsucn(t)u2, while ~b! ~main
figure! shows the intensity of the breather central siteucn0

u2. The
inset in ~b! shows the inverse participation numberR
5N 22(nucnu4, which gives a qualitative measure of the degree
localization.
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it is necessary~at least for a finite system! that the phonon
amplitude is not too small compared to the breather am
tude. If we increase the breather amplitude in Fig. 6~or de-
crease the phonon amplitude! sufficiently, we find that al-
though an oscillatory instability develops, the fluctuatio
created in the second step will be too weak to cause
breather to decay, and it will live seemingly forever as
‘‘chaotic phonobreather.’’ The absence of decay for sm
perturbations can be viewed as a consequence of the fac
the single-site DNLS breather is nonlinearly~Lyapunov!
stable for norm-conserving perturbations, in the sense
ucn(t)u remains arbitrarily close to the breather for all tim
if the initial perturbation is small enough@15#. Thus it is
clear that, for finite systems, the breather cannot be destro
unless the phonon amplitude exceeds some critical va
while nothing can be said about the infinite system, since
infinitely extended phonon obviously has an infinite norm

With 0,q,p/2, the first step resulting from the oscilla
tory instability occurs in a similar way as forq.p/2: the
breather acquires new frequencies and the small-ampli
sites of the phonon start moving. By instead making the
terpretation that the sites with nonzero amplitude at the
ticontinuous limit are defects in the zero-amplitude sta

e-

f

FIG. 7. Time evolution of the phonobreather@Eq. ~58!# with q
5p/4 for a system of 120 sites~periodic boundary conditions!,
perturbed only by the numerical truncation errors. The breather
quency isLb52.2, the phonon frequencyLph520.5 ~phonon am-
plitudea'0.3), andC51. ~a! showsucn(t)u2, while ~b! shows the
intensity of the breather central siteucn0

u2.
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their movement can be seen as a consequence of the r
sive interaction between spatially separated, small-amplit
breathers with opposite phases observed, e.g., in Ref.@17#.
We also observe, similarly as forq.p/2, the merging of
neighboring defects, but in this case their interaction with
breather will not lead to breather decay, but rather to brea
growth if the original amplitude of the breather is not to
large. A typical example is illustrated in Fig. 7. It can be se
by a careful inspection of Fig. 7~a! how the merging of
small-amplitude sites results in localized humps of lar
amplitude reminiscent of small-amplitude moving breath
traveling around in the lattice. The interaction of the
humps with the original breather leads to the growth of
latter in a similar way to that observed in Refs.@19–21#.
However, this growth stops when the breather amplitude
reached a critical value which is close to~but apparently
smaller than! that corresponding to the limit valueL54C
for small-amplitude perturbations found in Sec. IV~the latter
corresponds toucn0

u2'5.65). The final state also here a
pears to be a chaotic phonobreather; we have followed
time evolution of this kind of state for times up to 106 with-
out seeing any signs of decay. Also, if the initial breath
frequency is chosen above the critical valueL54C, we typi-
cally do not observe breather growth; instead the mean v
of the chaotic amplitude oscillations resulting from the osc
latory instability remains close to the initial amplitude.

VI. CONCLUDING REMARKS

Investigating the interaction between discrete nonlin
Schrödinger breathers and small perturbations, we h
found, first, that exciting an internal mode of the breath
always leads to a slow energy transfer to the breather, i.e
breather growth. Furthermore, we found that a DN
breather can pump energy from a small-amplitude stand
wave phonon, provided that the phonon wave vector
smaller than the critical valueqc given by Eq.~51!. In both
cases, the mechanism for breather growth involves
higher-order generation of radiating modes. Since t
mechanism disappears at a threshold valueL54C of the
breather frequency, it is impossible for a breather to gr
y
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beyond this value with the type of small-amplitude perturb
tions considered here. To analyze the interaction betw
breathers and standing-wave phonons of small but n
negligible amplitude, we considered the long-time evoluti
of weakly perturbed exact phonobreather solutions. The
stabilities of these, originating in oscillatory instabilities
the nonlinear phonons, were shown to lead to propaga
inhomogeneities whose interaction with the breather p
vided a mechanism for breather decay and destruction~when
the phonon wave vectorq.p/2) or growth (q,p/2 and
L,4C).

As already mentioned in Sec. I, the existence of the t
conserved quantities~1! and ~3! makes the DNLS equation
nongeneric among nonlinear lattice equations, and it is th
fore necessary to investigate to what extent the results
tained in this paper apply also for Klein-Gordon and FP
lattices. We plan to address these questions in a forthcom
publication, but let us stress here that the perturbational
proach used here for the DNLS equation needs to be m
fied to account for the fact that, generically, the dynamics
the breather also involves higher harmonics of its fundam
tal frequency. Moreover, the approach used in Secs. I
and IV, based on conservation laws, cannot be directly
plied in the absence of a second conserved quantity. H
ever, in view of the wide applicability of the DNLS equatio
~and in particular its appearance as a limit case of gen
lattice equations, as mentioned in Sec. I!, we believe that the
mechanisms for breather growth and destruction describe
this paper are essential ingredients for corresponding
cesses in general lattice models.
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